Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Canonical and non-canonical roles of complement in atherosclerosis

Abstract

Cardiovascular diseases are the leading cause of death globally, and atherosclerosis is the major contributor to the development and progression of cardiovascular diseases. Immune responses have a central role in the pathogenesis of atherosclerosis, with the complement system being an acknowledged contributor. Chronic activation of liver-derived and serum-circulating canonical complement sustains endothelial inflammation and innate immune cell activation, and deposition of complement activation fragments on inflamed endothelial cells is a hallmark of atherosclerotic plaques. However, increasing evidence indicates that liver-independent, cell-autonomous and non-canonical complement activities are underappreciated contributors to atherosclerosis. Furthermore, complement activation can also have atheroprotective properties. These specific detrimental or beneficial contributions of the complement system to the pathogenesis of atherosclerosis are dictated by the location of complement activation and engagement of its canonical versus non-canonical functions in a temporal fashion during atherosclerosis progression. In this Review, we summarize the classical and the emerging non-classical roles of the complement system in the pathogenesis of atherosclerosis and discuss potential strategies for therapeutic modulation of complement for the prevention and treatment of atherosclerotic cardiovascular disease.

Key points

  • Complement activities are compartmentalized, with liver-derived complement functioning systemically in the blood and lymph, (immune) cell-derived complement locally in tissue matrices, and intracellularly active complement within subcellular compartments and organelles.

  • The intracellular complement functions across immune and non-immune cells, where it controls cell proliferation, the responses to damage-associated molecular patterns and pathogen-associated molecular patterns, and the return to homeostasis, through modulation of basic cell physiological pathways.

  • Complement activities affect atherosclerosis pathogenesis on all three functional levels: systemically (endothelial cell activation), locally (immune cell effector functions) and intracellularly (control of cell metabolism and efferocytosis).

  • Complement activities can have pro-atherogenic and anti-atherogenic effects, depending on the location (systemic versus tissue) and time of action during atherosclerotic pathogenesis.

  • Targeting complement successfully for the management of atherosclerosis might require combinational modulation of systemic and locally and intracellularly active complement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The complement system and its location-driven activities.
Fig. 2: Complement-mediated contributions to the pathogenesis of atherosclerosis.
Fig. 3: Emerging concepts on the complement system in atherosclerosis.

Similar content being viewed by others

References

  1. Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Sima, P., Vannucci, L. & Vetvicka, V. Atherosclerosis as autoimmune disease. Ann. Transl. Med. 6, 116 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Xie, C. B. et al. Complement membrane attack complexes assemble NLRP3 inflammasomes triggering IL-1 activation of IFN-γ-primed human endothelium. Circ. Res. 124, 1747–1759 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. West, E. E. & Kemper, C. Complosome – the intracellular complement system. Nat. Rev. Nephrol. 19, 426–439 (2023).

    Article  PubMed  Google Scholar 

  5. Kolev, M. et al. Complement regulates nutrient influx and metabolic reprogramming during Th1 cell responses. Immunity 42, 1033–1047 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arbore, G. et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4+ T cells. Science 352, aad1210 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kimura, Y. et al. Expression of complement 3 and complement 5 in newt limb and lens regeneration. J. Immunol. 170, 2331–2339 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Carter, A. M. Complement activation: an emerging player in the pathogenesis of cardiovascular disease. Scientifica 2012, 402783 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Libby, P. et al. Atherosclerosis. Nat. Rev. Dis. Prim. 5, 56 (2019).

    Article  PubMed  Google Scholar 

  10. Gimbrone, M. A. & García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 118, 620–636 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bäck, M., Yurdagul, A., Tabas, I., Öörni, K. & Kovanen, P. T. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat. Rev. Cardiol. 16, 389–406 (2019).

    PubMed  PubMed Central  Google Scholar 

  12. Miller, Y. I. et al. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ. Res. 108, 235–248 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Binder, C. J., Papac-Milicevic, N. & Witztum, J. L. Innate sensing of oxidation-specific epitopes in health and disease. Nat. Rev. Immunol. 16, 485–497 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Javadifar, A. et al. Foam cells as therapeutic targets in atherosclerosis with a focus on the regulatory roles of non-coding RNAs. Int. J. Mol. Sci. 22, 2529 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moore, K. J. & Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell 145, 341–355 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yildirim, Z. et al. Intercepting IRE1 kinase-FMRP signaling prevents atherosclerosis progression. EMBO Mol. Med. 14, e15344 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, T. et al. Endoplasmic reticulum stress affects cholesterol homeostasis by inhibiting LXRα expression in hepatocytes and macrophages. Nutrients 12, 3088 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Viaud, M. et al. Lysosomal cholesterol hydrolysis couples efferocytosis to anti-inflammatory oxysterol production. Circ. Res. 122, 1369–1384 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yvan-Charvet, L. et al. ABCA1 and ABCG1 protect against oxidative stress-induced macrophage apoptosis during efferocytosis. Circ. Res. 106, 1861–1869 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kumar, D., Pandit, R. & Yurdagul, A. Mechanisms of continual efferocytosis by macrophages and its role in mitigating atherosclerosis. Immunometabolism 5, e00017 (2023).

    Article  PubMed  Google Scholar 

  22. Wezel, A. et al. Mast cells mediate neutrophil recruitment during atherosclerotic plaque progression. Atherosclerosis 241, 289–296 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Fernandez, D. M. et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 25, 1576–1588 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Winkels, H. & Wolf, D. Heterogeneity of T cells in atherosclerosis defined by single-cell RNA-sequencing and cytometry by time of flight. Arterioscler. Thromb. Vasc. Biol. 41, 549–563 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Engelen, S. E., Robinson, A. J. B., Zurke, Y.-X. & Monaco, C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed? Nat. Rev. Cardiol. 19, 522–542 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saigusa, R., Winkels, H. & Ley, K. T cell subsets and functions in atherosclerosis. Nat. Rev. Cardiol. 17, 387–401 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ketelhuth, D. F. J. & Hansson, G. K. Adaptive response of T and B cells in atherosclerosis. Circ. Res. 118, 668–678 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Mangge, H., Prüller, F., Schnedl, W., Renner, W. & Almer, G. Beyond macrophages and T cells: B cells and immunoglobulins determine the fate of the atherosclerotic plaque. Int. J. Mol. Sci. 21, 4082 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sage, A. P., Tsiantoulas, D., Binder, C. J. & Mallat, Z. The role of B cells in atherosclerosis. Nat. Rev. Cardiol. 16, 180–196 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Hu, D. et al. Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin β receptors. Immunity 42, 1100–1115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Siedlinski, M. et al. White blood cells and blood pressure: a Mendelian randomization study. Circulation 141, 1307–1317 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mohanta, S. K. et al. Neuroimmune cardiovascular interfaces control atherosclerosis. Nature 605, 152–159 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. West, E. E., Woodruff, T., Fremeaux-Bacchi, V. & Kemper, C. Complement in human disease: approved and up-and-coming therapeutics. Lancet 403, 392–405 (2024).

    Article  CAS  PubMed  Google Scholar 

  34. Dutta, K., Friscic, J. & Hoffmann, M. H. Targeting the tissue-complosome for curbing inflammatory disease. Semin. Immunol. 60, 101644 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Flajnik, M, Singh, N. J. & Holland, S. M. Paul’s Fundamental Immunology 8th edn (LWW, 2022).

  36. Merle, N. S., Church, S. E., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement system part I – molecular mechanisms of activation and regulation. Front. Immunol. 6, 262 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Murphy, K., Weaver, C. & Berg, L. Janeway’s Immunobiology 10th edn (Norton, 2022).

  38. Merle, N. S., Noe, R., Halbwachs-Mecarelli, L., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement system part II: role in immunity. Front. Immunol. 6, 257 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mastellos, D. C., Hajishengallis, G. & Lambris, J. D. A guide to complement biology, pathology and therapeutic opportunity. Nat. Rev. Immunol. 24, 118–141 (2023).

    Article  PubMed  Google Scholar 

  40. Conigliaro, P. et al. Complement, infection, and autoimmunity. Curr. Opin. Rheumatol. 31, 532–541 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Coss, S. L. et al. The complement system and human autoimmune diseases. J. Autoimmun. 137, 102979 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Zipfel, P. F. & Skerka, C. Complement regulators and inhibitory proteins. Nat. Rev. Immunol. 9, 729–740 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Kolev, M. et al. Diapedesis-induced integrin signaling via LFA-1 facilitates tissue immunity by inducing intrinsic complement C3 expression in immune cells. Immunity 52, 513–527.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liszewski, M. K. et al. Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation. Immunity 39, 1143–1157 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Verschoor, A., Brockman, M. A., Gadjeva, M., Knipe, D. M. & Carroll, M. C. Myeloid C3 determines induction of humoral responses to peripheral herpes simplex virus infection. J. Immunol. 171, 5363–5371 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Strainic, M. G. et al. Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity 28, 425–435 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Heeger, P. S. et al. Decay-accelerating factor modulates induction of T cell immunity. J. Exp. Med. 201, 1523–1530 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lalli, P. N., Zhou, W., Sacks, S., Medof, M. E. & Heeger, P. S. Locally produced and activated complement as a mediator of alloreactive T cells. Front. Biosci. Sch. Ed. 1, 117–124 (2009).

    Article  Google Scholar 

  49. Liu, J. et al. The complement inhibitory protein DAF (CD55) suppresses T cell immunity in vivo. J. Exp. Med. 201, 567–577 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Peng, Q. et al. Local production and activation of complement up-regulates the allostimulatory function of dendritic cells through C3a-C3aR interaction. Blood 111, 2452–2461 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Lalli, P. N., Strainic, M. G., Lin, F., Medof, M. E. & Heeger, P. S. Decay accelerating factor can control T cell differentiation into IFN-γ-producing effector cells via regulating local C5a-induced IL-12 production. J. Immunol. 179, 5793–5802 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Lalli, P. N. et al. Locally produced C5a binds to T cell-expressed C5aR to enhance effector T-cell expansion by limiting antigen-induced apoptosis. Blood 112, 1759–1766 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Arbore, G. et al. Complement receptor CD46 co-stimulates optimal human CD8+ T cell effector function via fatty acid metabolism. Nat. Commun. 9, 4186 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. King, B. C. & Blom, A. M. Intracellular complement: evidence, definitions, controversies, and solutions. Immunol. Rev. 313, 104–119 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Kremlitzka, M. et al. Interaction of serum-derived and internalized C3 with DNA in human B cells – a potential involvement in regulation of gene transcription. Front. Immunol. 10, 493 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Niyonzima, N. et al. Mitochondrial C5aR1 activity in macrophages controls IL-1β production underlying sterile inflammation. Sci. Immunol. 6, eabf2489 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sorbara, M. T. et al. Complement C3 drives autophagy-dependent restriction of cyto-invasive bacteria. Cell Host Microbe 23, 644–652.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. King, B. C., Renström, E. & Blom, A. M. Intracellular cytosolic complement component C3 regulates cytoprotective autophagy in pancreatic beta cells by interaction with ATG16L1. Autophagy 15, 919–921 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kiss, M. G. et al. Cell-autonomous regulation of complement C3 by factor H limits macrophage efferocytosis and exacerbates atherosclerosis. Immunity 56, 1809–1824.e10 (2023).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, Y., Tong, X., Zhang, J. & Ye, X. The complement C1qA enhances retinoic acid-inducible gene-I-mediated immune signalling. Immunology 136, 78–85 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tam, J. C. H., Bidgood, S. R., McEwan, W. A. & James, L. C. Intracellular sensing of complement C3 activates cell autonomous immunity. Science 345, 1256070 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Liu, H. et al. Mannan binding lectin attenuates double-stranded RNA-mediated TLR3 activation and innate immunity. FEBS Lett. 588, 866–872 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Kiss, M. G. & Binder, C. J. The multifaceted impact of complement on atherosclerosis. Atherosclerosis 351, 29–40 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Cao, W. et al. Dendritic cells in the arterial wall express C1q: potential significance in atherogenesis. Cardiovasc. Res. 60, 175–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Jönsson, G. et al. Hereditary C2 deficiency in Sweden: frequent occurrence of invasive infection, atherosclerosis, and rheumatic disease. Medicine 84, 23–34 (2005).

    Article  PubMed  Google Scholar 

  66. Kramer, J. et al. C4B*Q0 allotype as risk factor for myocardial infarction. BMJ 309, 313–314 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nityanand, S., Hamsten, A., Lithell, H., Holm, G. & Lefvert, A. K. C4 null alleles and myocardial infarction. Atherosclerosis 143, 377–381 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Muscari, A. et al. Association of serum IgA and C4 with severe atherosclerosis. Atherosclerosis 74, 179–186 (1988).

    Article  CAS  PubMed  Google Scholar 

  69. Moreno, L. A., Sarria, A., Lazaro, A., Bueno, M. & Larrad, L. Serum C4 concentration and risk of atherosclerosis. BMJ 309, 1087 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cavusoglu, E. et al. Usefulness of the serum complement component C4 as a predictor of stroke in patients with known or suspected coronary artery disease referred for coronary angiography. Am. J. Cardiol. 100, 164–168 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Engström, G., Hedblad, B., Janzon, L. & Lindgärde, F. Complement C3 and C4 in plasma and incidence of myocardial infarction and stroke: a population-based cohort study. Eur. J. Cardiovasc. Prev. Rehabil. 14, 392–397 (2007).

    Article  PubMed  Google Scholar 

  72. Guo, S. et al. Serum complement C1q activity is associated with obstructive coronary artery disease. Front. Cardiovasc. Med. 8, 618173 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ni, X.-N. et al. Serum complement C1q level is associated with acute coronary syndrome. Mol. Immunol. 120, 130–135 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Cavusoglu, E. et al. Usefulness of complement C1q to predict 10-year mortality in men with diabetes mellitus referred for coronary angiography. Am. J. Cardiol. 122, 33–38 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Hertle, E. et al. Classical pathway of complement activation: longitudinal associations of C1q and C1-INH with cardiovascular outcomes: the CODAM study (Cohort on Diabetes and Atherosclerosis Maastricht) – brief report. Arterioscler. Thromb. Vasc. Biol. 38, 1242–1244 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Sasaki, S. et al. Involvement of enhanced expression of classical complement C1q in atherosclerosis progression and plaque instability: C1q as an indicator of clinical outcome. PLoS One 17, e0262413 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pulanco, M. C. et al. Complement protein C1q enhances macrophage foam cell survival and efferocytosis. J. Immunol. 198, 472–480 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Donat, C., Thanei, S. & Trendelenburg, M. Binding of von Willebrand factor to complement C1q decreases the phagocytosis of cholesterol crystals and subsequent IL-1 secretion in macrophages. Front. Immunol. 10, 2712 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Madsen, H. O., Videm, V., Svejgaard, A., Svennevig, J. L. & Garred, P. Association of mannose-binding-lectin deficiency with severe atherosclerosis. Lancet 352, 959–960 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Vengen, I. T. et al. Mannose-binding lectin deficiency is associated with myocardial infarction: the HUNT2 study in Norway. PLoS ONE 7, e42113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Heurich, M. et al. Common polymorphisms in C3, factor B, and factor H collaborate to determine systemic complement activity and disease risk. Proc. Natl Acad. Sci. USA 108, 8761–8766 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sorensen, H. & Dissing, J. Association between the C3F gene and atherosclerotic vascular diseases. Hum. Hered. 25, 279–283 (1975).

    Article  CAS  PubMed  Google Scholar 

  83. Cai, G. et al. Complement C3 gene polymorphisms are associated with lipid levels, but not the risk of coronary artery disease: a case-control study. Lipids Health Dis. 18, 217 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Muscari, A. et al. Relationship between serum C3 levels and traditional risk factors for myocardial infarction. Acta Cardiol. 53, 345–354 (1998).

    CAS  PubMed  Google Scholar 

  85. Kojima, C., Takei, T., Ogawa, T. & Nitta, K. Serum complement C3 predicts renal arteriolosclerosis in non-diabetic chronic kidney disease. J. Atheroscler. Thromb. 19, 854–861 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Fehérvári, M. et al. The level of complement C3 is associated with the severity of atherosclerosis but not with arterial calcification in peripheral artery disease. Int. Angiol. J. Int. Union. Angiol. 33, 35–41 (2014).

    Google Scholar 

  87. Ajjan, R. et al. Complement C3 and C-reactive protein levels in patients with stable coronary artery disease. Thromb. Haemost. 94, 1048–1053 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Muscari, A. et al. Association of serum C3 levels with the risk of myocardial infarction. Am. J. Med. 98, 357–364 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Carter, A. M., Prasad, U. K. & Grant, P. J. Complement C3 and C-reactive protein in male survivors of myocardial infarction. Atherosclerosis 203, 538–543 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Xin, Y. et al. C3 and alternative pathway components are associated with an adverse lipoprotein subclass profile: the CODAM study. J. Clin. Lipidol. 15, 311–319 (2021).

    Article  PubMed  Google Scholar 

  91. Hertle, E. et al. Distinct associations of complement C3a and its precursor C3 with atherosclerosis and cardiovascular disease. The CODAM study. Thromb. Haemost. 111, 1102–1111 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. van Greevenbroek, M. M. J. et al. Human plasma complement C3 is independently associated with coronary heart disease, but only in heavy smokers (the CODAM study). Int. J. Cardiol. 154, 158–162 (2012).

    Article  PubMed  Google Scholar 

  93. Phillips, C. M. et al. Dietary fat, abdominal obesity and smoking modulate the relationship between plasma complement component 3 concentrations and metabolic syndrome risk. Atherosclerosis 220, 513–519 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Verdeguer, F. et al. Complement regulation in murine and human hypercholesterolemia and role in the control of macrophage and smooth muscle cell proliferation. Cardiovasc. Res. 76, 340–350 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Zhang, B., Yang, N. & Gao, C. Is plasma C3 and C4 levels useful in young cerebral ischemic stroke patients? Associations with prognosis at 3 months. J. Thromb. Thrombolysis 39, 209–214 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. El Khoudary, S. R. et al. Associations of HDL subclasses and lipid content with complement proteins over the menopause transition: the SWAN HDL ancillary study: HDL and complement proteins in women. J. Clin. Lipidol. 16, 649–657 (2022).

    Article  PubMed  Google Scholar 

  97. Széplaki, G. et al. Association of high serum concentration of the third component of complement (C3) with pre-existing severe coronary artery disease and new vascular events in women. Atherosclerosis 177, 383–389 (2004).

    Article  PubMed  Google Scholar 

  98. Nagaraj, N. et al. Complement proteins and arterial calcification in middle aged women: cross-sectional effect of cardiovascular fat. The SWAN Cardiovascular Fat Ancillary Study. Atherosclerosis 243, 533–539 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hoke, M. et al. Polymorphism of the complement 5 gene and cardiovascular outcome in patients with atherosclerosis. Eur. J. Clin. Invest. 42, 921–926 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Wu, H. et al. Polymorphism of the complement 5 gene is associated with large artery atherosclerosis stroke in Chinese patients. Arq. Neuropsiquiatr. 74, 881–886 (2016).

    Article  PubMed  Google Scholar 

  101. Guo, L. et al. Single-nucleotide polymorphism rs17611 of complement component 5 shows association with ischemic stroke in northeast Chinese population. Genet. Test. Mol. Biomark. 20, 766–770 (2016).

    Article  CAS  Google Scholar 

  102. Henes, J. K. et al. C5 variant rs10985126 is associated with mortality in patients with symptomatic coronary artery disease. Pharmacogenomics Pers. Med. 14, 893–903 (2021).

    Google Scholar 

  103. Aragam, K. G. et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat. Genet. 54, 1803–1815 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Martínez-López, D. et al. Complement C5 protein as a marker of subclinical atherosclerosis. J. Am. Coll. Cardiol. 75, 1926–1941 (2020).

    Article  PubMed  Google Scholar 

  105. Speidl, W. S. et al. Complement component C5a predicts future cardiovascular events in patients with advanced atherosclerosis. Eur. Heart J. 26, 2294–2299 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Hertle, E. et al. Complement activation products C5a and sC5b-9 are associated with low-grade inflammation and endothelial dysfunction, but not with atherosclerosis in a cross-sectional analysis: the CODAM study. Int. J. Cardiol. 174, 400–403 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. De Vries, M. A. et al. Complement receptor 1 gene polymorphisms are associated with cardiovascular risk. Atherosclerosis 257, 16–21 (2017).

    Article  PubMed  Google Scholar 

  108. Weismann, D. et al. Complement factor H binds malondialdehyde epitopes and protects from oxidative stress. Nature 478, 76–81 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jylhävä, J. et al. Genetics of C-reactive protein and complement factor H have an epistatic effect on carotid artery compliance: the Cardiovascular Risk in Young Finns study. Clin. Exp. Immunol. 155, 53–58 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Volcik, K. A. et al. Association of the complement factor H Y402H polymorphism with cardiovascular disease is dependent upon hypertension status: the ARIC study. Am. J. Hypertens. 21, 533–538 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Pai, J. K. et al. Complement factor H (Y402H) polymorphism and risk of coronary heart disease in US men and women. Eur. Heart J. 28, 1297–1303 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Koeijvoets, K. C. M. C. et al. Complement factor H Y402H decreases cardiovascular disease risk in patients with familial hypercholesterolaemia. Eur. Heart J. 30, 618–623 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Zee, R. Y. L., Diehl, K. A. & Ridker, P. M. Complement factor H Y402H gene polymorphism, C-reactive protein, and risk of incident myocardial infarction, ischaemic stroke, and venous thromboembolism: a nested case-control study. Atherosclerosis 187, 332–335 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Sofat, R. et al. Genetic variation in complement factor H and risk of coronary heart disease: eight new studies and a meta-analysis of around 48,000 individuals. Atherosclerosis 213, 184–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Schepers, A. et al. Inhibition of complement component C3 reduces vein graft atherosclerosis in apolipoprotein E3-Leiden transgenic mice. Circulation 114, 2831–2838 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Wang, Y. et al. Clonally expanding smooth muscle cells promote atherosclerosis by escaping efferocytosis and activating the complement cascade. Proc. Natl Acad. Sci. USA 117, 15818–15826 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu, F. et al. Targeted mouse complement inhibitor CR2-Crry protects against the development of atherosclerosis in mice. Atherosclerosis 234, 237–243 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dai, S. et al. Complement inhibition targeted to injury specific neoepitopes attenuates atherogenesis in mice. Front. Cardiovasc. Med. 8, 731315 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yin, C. et al. ApoE attenuates unresolvable inflammation by complex formation with activated C1q. Nat. Med. 25, 496–506 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Seidel, F. et al. Therapeutic intervention with anti-complement component 5 antibody does not reduce NASH but does attenuate atherosclerosis and MIF concentrations in Ldlr−/−.Leiden mice. Int. J. Mol. Sci. 23, 10736 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. An, G. et al. Overexpression of complement component C5a accelerates the development of atherosclerosis in ApoE-knockout mice. Oncotarget 7, 56060–56070 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Wezel, A. et al. Complement factor C5a induces atherosclerotic plaque disruptions. J. Cell. Mol. Med. 18, 2020–2030 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lewis, R. D., Jackson, C. L., Morgan, B. P. & Hughes, T. R. The membrane attack complex of complement drives the progression of atherosclerosis in apolipoprotein E knockout mice. Mol. Immunol. 47, 1098–1105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bhatia, V. K. et al. Complement C1q reduces early atherosclerosis in low-density lipoprotein receptor-deficient mice. Am. J. Pathol. 170, 416–426 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Persson, L. et al. Lack of complement factor C3, but not factor B, increases hyperlipidemia and atherosclerosis in apolipoprotein E−/− low-density lipoprotein receptor−/− mice. Arterioscler. Thromb. Vasc. Biol. 24, 1062–1067 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Buono, C. et al. Influence of C3 deficiency on atherosclerosis. Circulation 105, 3025–3031 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Matthijsen, R. A. et al. Macrophage-specific expression of mannose-binding lectin controls atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 119, 2188–2195 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Lewis, M. J. et al. Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 120, 417–426 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Steiner, T. et al. Protective role for properdin in progression of experimental murine atherosclerosis. PLoS One 9, e92404 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Wei, L.-L. et al. Protective role of C3aR (C3a anaphylatoxin receptor) against atherosclerosis in atherosclerosis-prone mice. Arterioscler. Thromb. Vasc. Biol. 40, 2070–2083 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Liu, L., Chan, M., Yu, L., Wang, W. & Qiang, L. Adipsin deficiency does not impact atherosclerosis development in Ldlr−/− mice. Am. J. Physiol. Endocrinol. Metab. 320, E87–E92 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Malik, T. H. et al. The alternative pathway is critical for pathogenic complement activation in endotoxin- and diet-induced atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 122, 1948–1956 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Thorbjornsdottir, P. et al. Vaccinia virus complement control protein diminishes formation of atherosclerotic lesions: complement is centrally involved in atherosclerotic disease. Ann. N. Y. Acad. Sci. 1056, 1–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Atkinson, C. et al. Targeted complement inhibition by C3d recognition ameliorates tissue injury without apparent increase in susceptibility to infection. J. Clin. Invest. 115, 2444–2453 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Krijnen, P. A. J. et al. C1-esterase inhibitor protects against early vein graft remodeling under arterial blood pressure. Atherosclerosis 220, 86–92 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Shagdarsuren, E. et al. C1-esterase inhibitor protects against neointima formation after arterial injury in atherosclerosis-prone mice. Circulation 117, 70–78 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Getz, G. S. & Reardon, C. A. Diet and murine atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 26, 242–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Patel, S. et al. ApoE−/− mice develop atherosclerosis in the absence of complement component C5. Biochem. Biophys. Res. Commun. 286, 164–170 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Shagdarsuren, E. et al. C5a receptor targeting in neointima formation after arterial injury in atherosclerosis-prone mice. Circulation 122, 1026–1036 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Selle, J. et al. Atheroprotective role of C5ar2 deficiency in apolipoprotein E-deficient mice. Thromb. Haemost. 114, 848–858 (2015).

    Article  PubMed  Google Scholar 

  141. Manthey, H. D. et al. Complement C5a inhibition reduces atherosclerosis in ApoE−/− mice. FASEB J. 25, 2447–2455 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Wu, G. et al. Complement regulator CD59 protects against atherosclerosis by restricting the formation of complement membrane attack complex. Circ. Res. 104, 550–558 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Li, B. et al. Molecular mechanism of inhibitory effects of CD59 gene on atherosclerosis in ApoE−/− mice. Immunol. Lett. 156, 68–81 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. An, G. et al. CD59 but not DAF deficiency accelerates atherosclerosis in female ApoE knockout mice. Mol. Immunol. 46, 1702–1709 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Liu, F. et al. Deficiency of the complement regulatory protein CD59 accelerates the development of diabetes-induced atherosclerosis in mice. J. Diabetes Complications 31, 311–317 (2017).

    Article  PubMed  Google Scholar 

  146. Hamada, N. et al. Loss of clusterin limits atherosclerosis in apolipoprotein E-deficient mice via reduced expression of Egr-1 and TNF-α. J. Atheroscler. Thromb. 18, 209–216 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Lewis, R. D. et al. CD55 deficiency protects against atherosclerosis in ApoE-deficient mice via C3a modulation of lipid metabolism. Am. J. Pathol. 179, 1601–1607 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Leung, V. W. Y. et al. Decay-accelerating factor suppresses complement C3 activation and retards atherosclerosis in low-density lipoprotein receptor-deficient mice. Am. J. Pathol. 175, 1757–1767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jia, Q. et al. Association between complement C3 and prevalence of fatty liver disease in an adult population: a cross-sectional study from the Tianjin Chronic Low-Grade Systemic Inflammation and Health (TCLSIHealth) cohort study. PLoS One 10, e0122026 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Kemper, C. & Sack, M. N. Linking nutrient sensing, mitochondrial function, and PRR immune cell signaling in liver disease. Trends Immunol. 43, 886–900 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Tomai, F. et al. Unstable angina and elevated C-reactive protein levels predict enhanced vasoreactivity of the culprit lesion. Circulation 104, 1471–1476 (2001).

    Article  CAS  PubMed  Google Scholar 

  152. Mallat, Z. et al. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 101, 841–843 (2000).

    Article  CAS  PubMed  Google Scholar 

  153. Volanakis, J. E. & Kaplan, M. H. Interaction of C-reactive protein complexes with the complement system. II. Consumption of guinea pig complement by CRP complexes: requirement for human C1q. J. Immunol. 113, 9–17 (1974).

    Article  CAS  PubMed  Google Scholar 

  154. Tsiantoulas, D. et al. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies. J. Lipid Res. 56, 440–448 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cherepanova, O. A. et al. Novel autoimmune IgM antibody attenuates atherosclerosis in IgM deficient low-fat diet-fed, but not western diet-fed Apoe−/− mice. Arterioscler. Thromb. Vasc. Biol. 40, 206–219 (2020).

    Article  CAS  PubMed  Google Scholar 

  156. Su, J. et al. Antibodies of IgM subclass to phosphorylcholine and oxidized LDL are protective factors for atherosclerosis in patients with hypertension. Atherosclerosis 188, 160–166 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Eichinger, S. et al. Natural antibodies to oxidation-specific epitopes: innate immune response and venous thromboembolic disease. J. Thromb. Haemost. 16, 31–35 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Martel, C. et al. Requirements for membrane attack complex formation and anaphylatoxins binding to collagen-activated platelets. PLoS ONE 6, e18812 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Shivshankar, P., Li, Y.-D., Mueller-Ortiz, S. L. & Wetsel, R. A. In response to complement anaphylatoxin peptides C3a and C5a, human vascular endothelial cells migrate and mediate the activation of B-cells and polarization of T-cells. FASEB J. 34, 7540–7560 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Propson, N. E., Roy, E. R., Litvinchuk, A., Köhl, J. & Zheng, H. Endothelial C3a receptor mediates vascular inflammation and blood-brain barrier permeability during aging. J. Clin. Invest. 131, e140966 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Aiello, S. et al. C5a and C5aR1 are key drivers of microvascular platelet aggregation in clinical entities spanning from aHUS to COVID-19. Blood Adv. 6, 866–881 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ikeda, K. et al. C5a induces tissue factor activity on endothelial cells. Thromb. Haemost. 77, 394–398 (1997).

    Article  CAS  PubMed  Google Scholar 

  163. Manz, X. D., Bogaard, H. J. & Aman, J. Regulation of VWF (von Willebrand factor) in inflammatory thrombosis. Arterioscler. Thromb. Vasc. Biol. 42, 1307–1320 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Skeie, J. M., Fingert, J. H., Russell, S. R., Stone, E. M. & Mullins, R. F. Complement component C5a activates ICAM-1 expression on human choroidal endothelial cells. Invest. Ophthalmol. Vis. Sci. 51, 5336–5342 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Vlaicu, S. I. et al. The role of complement activation in atherogenesis: the first 40 years. Immunol. Res. 64, 1–13 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Xie, C. B. et al. Complement-activated interferon-γ-primed human endothelium transpresents interleukin-15 to CD8+ T cells. J. Clin. Invest. 130, 3437–3452 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wu, Y. Contact pathway of coagulation and inflammation. Thromb. J. 13, 17 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Gulla, K. C. et al. Activation of mannan‐binding lectin‐associated serine proteases leads to generation of a fibrin clot. Immunology 129, 482–495 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Amara, U. et al. Molecular intercommunication between the complement and coagulation systems. J. Immunol. 185, 5628–5636 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Massberg, S. et al. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J. Exp. Med. 197, 41–49 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Huo, Y. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat. Med. 9, 61–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. Mannes, M. et al. Complement and platelets: prothrombotic cell activation requires membrane attack complex-induced release of danger signals. Blood Adv. 7, 6367–6380 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nording, H. et al. The C5a/C5a receptor 1 axis controls tissue neovascularization through CXCL4 release from platelets. Nat. Commun. 12, 3352 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sauter, R. J. et al. Functional relevance of the anaphylatoxin receptor C3aR for platelet function and arterial thrombus formation marks an intersection point between innate immunity and thrombosis. Circulation 138, 1720–1735 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Saito, E. et al. Complement receptors in atherosclerotic lesions. Artery 19, 47–62 (1992).

    CAS  PubMed  Google Scholar 

  176. Seifert, P. S., Messner, M., Roth, I. & Bhakdi, S. Analysis of complement C3 activation products in human atherosclerotic lesions. Atherosclerosis 91, 155–162 (1991).

    Article  CAS  PubMed  Google Scholar 

  177. Ge, X. et al. Complement activation in the arteries of patients with severe atherosclerosis. Int. J. Clin. Exp. Pathol. 11, 1–9 (2018).

    PubMed  PubMed Central  Google Scholar 

  178. Niculescu, F., Niculescu, T. & Rus, H. C5b-9 terminal complement complex assembly on apoptotic cells in human arterial wall with atherosclerosis. Exp. Mol. Pathol. 76, 17–23 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Samstad, E. O. et al. Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release. J. Immunol. 192, 2837–2845 (2014).

    Article  CAS  PubMed  Google Scholar 

  180. Pilely, K. et al. Cholesterol crystals activate the lectin complement pathway via ficolin-2 and mannose-binding lectin: implications for the progression of atherosclerosis. J. Immunol. 196, 5064–5074 (2016).

    Article  CAS  PubMed  Google Scholar 

  181. Niyonzima, N. et al. Complement activation by cholesterol crystals triggers a subsequent cytokine response. Mol. Immunol. 84, 43–50 (2017).

    Article  CAS  PubMed  Google Scholar 

  182. Speidl, W. S. et al. The complement component C5a is present in human coronary lesions in vivo and induces the expression of MMP‐1 and MMP‐9 in human macrophages in vitro. FASEB J. 25, 35–44 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Afzali, B. & Kemper, C. Fibroblast tissue priming – not so nice to C you! Immunity 54, 847–850 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Arbore, G. & Kemper, C. A novel “complement–metabolism–inflammasome axis” as a key regulator of immune cell effector function. Eur. J. Immunol. 46, 1563–1573 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Baudino, L. et al. C3 opsonization regulates endocytic handling of apoptotic cells resulting in enhanced T-cell responses to cargo-derived antigens. Proc. Natl Acad. Sci. USA 111, 1503–1508 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Païdassi, H. et al. Investigations on the C1q–calreticulin–phosphatidylserine interactions yield new insights into apoptotic cell recognition. J. Mol. Biol. 408, 277–290 (2011).

    Article  PubMed  Google Scholar 

  187. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838–1847 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Tardif, J.-C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).

    Article  CAS  PubMed  Google Scholar 

  190. Harris, E. FDA approves vilobelimab for emergency use in hospitalized adults. JAMA 329, 1544 (2023).

    PubMed  Google Scholar 

  191. Jayne, D. R. W., Merkel, P. A., Schall, T. J. & Bekker, P., ADVOCATE Study Group. Avacopan for the treatment of ANCA-associated vasculitis. N. Engl. J. Med. 384, 599–609 (2021).

    Article  CAS  PubMed  Google Scholar 

  192. APEX AMI Investigators Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: a randomized controlled trial. JAMA 297, 43–51 (2007).

    Article  Google Scholar 

  193. Patel, J. K. et al. Complement inhibition for prevention of antibody-mediated rejection in immunologically high-risk heart allograft recipients. Am. J. Transplant. 21, 2479–2488 (2021).

    Article  CAS  PubMed  Google Scholar 

  194. Marumo, A., Okabe, H., Sugihara, H. & Eguchi, M. Ravulizumab can effectively treat ischemic enteritis caused by paroxysmal nocturnal hemoglobinuria. J. Nippon Med. Sch. https://doi.org/10.1272/jnms.JNMS.2024_91-505 (2023).

  195. Granger, C. B. et al. Pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to primary percutaneous coronary intervention in acute myocardial infarction: the COMplement inhibition in Myocardial infarction treated with Angioplasty (COMMA) trial. Circulation 108, 1184–1190 (2003).

    Article  CAS  PubMed  Google Scholar 

  196. Abicht, J. et al. Complement C3 inhibitor Cp40 attenuates xenoreactions in pig hearts perfused with human blood. Xenotransplantation 24, e12262 (2017).

    Article  Google Scholar 

  197. Agnihotri, R. & Gaur, S. C3 targeted complement therapy for chronic periodontitis – a scoping review. J. Int. Soc. Prev. Community Dent. 12, 500–505 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Czesnikiewicz-Guzik, M. et al. Causal association between periodontitis and hypertension: evidence from Mendelian randomization and a randomized controlled trial of non-surgical periodontal therapy. Eur. Heart J. 40, 3459–3470 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Sharma, S. et al. Periodontal therapy and treatment of hypertension-alternative to the pharmacological approach. A systematic review and meta-analysis. Pharmacol. Res. 166, 105511 (2021).

    Article  CAS  PubMed  Google Scholar 

  200. Lazar, H. L. et al. Soluble human complement receptor 1 limits ischemic damage in cardiac surgery patients at high risk requiring cardiopulmonary bypass. Circulation 110, II274–II279 (2004).

    Article  PubMed  Google Scholar 

  201. Lazar, H. L. et al. Beneficial effects of complement inhibition with soluble complement receptor 1 (TP10) during cardiac surgery: is there a gender difference? Circulation 116, I83–I88 (2007).

    Article  CAS  PubMed  Google Scholar 

  202. Selvaskandan, H. et al. Inhibition of the lectin pathway of the complement system as a novel approach in the management of IgA vasculitis-associated nephritis. Nephron 144, 453–458 (2020).

    Article  CAS  PubMed  Google Scholar 

  203. US National Library of Medicine. ClinicalTrials.gov www.clinicaltrials.gov/ct2/show/NCT05828368 (2023).

  204. US National Library of Medicine. ClinicalTrials.gov www.clinicaltrials.gov/ct2/show/NCT05746559 (2024).

  205. US National Library of Medicine. ClinicalTrials.gov www.clinicaltrials.gov/ct2/show/NCT05145283 (2024).

  206. Nyambuya, T. M., Dludla, P. V., Mxinwa, V. & Nkambule, B. B. The pleotropic effects of fluvastatin on complement-mediated T-cell activation in hypercholesterolemia. Biomed. Pharmacother. 143, 112224 (2021).

    Article  CAS  PubMed  Google Scholar 

  207. Jensen, M. R. et al. Structural basis for simvastatin competitive antagonism of complement receptor 3. J. Biol. Chem. 291, 16963–16976 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Timár, O. et al. Rosuvastatin improves impaired endothelial function, lowers high sensitivity CRP, complement and immuncomplex production in patients with systemic sclerosis – a prospective case-series study. Arthritis Res. Ther. 15, R105 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Kinderlerer, A. R. et al. Statin-induced expression of CD59 on vascular endothelium in hypoxia: a potential mechanism for the anti-inflammatory actions of statins in rheumatoid arthritis. Arthritis Res. Ther. 8, R130 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Mason, J. C. et al. Statin-induced expression of decay-accelerating factor protects vascular endothelium against complement-mediated injury. Circ. Res. 91, 696–703 (2002).

    Article  CAS  PubMed  Google Scholar 

  211. Dong, X. et al. Captopril alleviates epilepsy and cognitive impairment by attenuation of C3-mediated inflammation and synaptic phagocytosis. J. Neuroinflammation 19, 226 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kemper, C. et al. Complement: the road less traveled. J. Immunol. 210, 119–125 (2023).

    Article  CAS  PubMed  Google Scholar 

  213. Arbore, G. et al. Deep phenotyping detects a pathological CD4+ T-cell complosome signature in systemic sclerosis. Cell. Mol. Immunol. 17, 1010–1013 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Friščić, J. et al. The complement system drives local inflammatory tissue priming by metabolic reprogramming of synovial fibroblasts. Immunity 54, 1002–1021.e10 (2021).

    Article  PubMed  Google Scholar 

  215. Hajishengallis, G., Reis, E. S., Mastellos, D. C., Ricklin, D. & Lambris, J. D. Novel mechanisms and functions of complement. Nat. Immunol. 18, 1288–1298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Coulthard, L. G. & Woodruff, T. M. Is the complement activation product C3a a proinflammatory molecule? Re-evaluating the evidence and the myth. J. Immunol. 194, 3542–3548 (2015).

    Article  CAS  PubMed  Google Scholar 

  217. Chou, E. L. et al. Vascular smooth muscle cell phenotype switching in carotid atherosclerosis. JVS Vasc. Sci. 3, 41–47 (2022).

    Article  PubMed  Google Scholar 

  218. Zimmer, S. et al. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Sci. Transl. Med. 8, 333ra50 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Gérard, A., Cope, A. P., Kemper, C., Alon, R. & Köchl, R. LFA-1 in T cell priming, differentiation, and effector functions. Trends Immunol. 42, 706–722 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Rathmell, J. C., Heiden, M. G. V., Harris, M. H., Frauwirth, K. A. & Thompson, C. B. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol. Cell 6, 683–692 (2000).

    Article  CAS  PubMed  Google Scholar 

  221. Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    Article  CAS  PubMed  Google Scholar 

  222. Forteza, M. J. & Ketelhuth, D. F. J. Metabolism in atherosclerotic plaques: immunoregulatory mechanisms in the arterial wall. Clin. Sci. 136, 435–454 (2022).

    Article  CAS  Google Scholar 

  223. Lemberg, K. M., Gori, S. S., Tsukamoto, T., Rais, R. & Slusher, B. S. Clinical development of metabolic inhibitors for oncology. J. Clin. Invest. 132, e148550 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Ding, P. et al. Intracellular complement C5a/C5aR1 stabilizes β-catenin to promote colorectal tumorigenesis. Cell Rep. 39, 110851 (2022).

    Article  CAS  PubMed  Google Scholar 

  225. Merle, N. S., Singh, P., Rahman, J. & Kemper, C. Integrins meet complement: the evolutionary tip of an iceberg orchestrating metabolism and immunity. Br. J. Pharmacol. 178, 2754–2770 (2021).

    Article  CAS  PubMed  Google Scholar 

  226. Elvington, M., Liszewski, M. K., Bertram, P., Kulkarni, H. S. & Atkinson, J. P. A C3(H20) recycling pathway is a component of the intracellular complement system. J. Clin. Invest. 127, 970–981 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Ishii, M., Beeson, G., Beeson, C. & Rohrer, B. Mitochondrial C3a receptor activation in oxidatively stressed epithelial cells reduces mitochondrial respiration and metabolism. Front. Immunol. 12, 628062 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Schäfer, N. et al. Complement factor H-related 3 enhanced inflammation and complement activation in human RPE cells. Front. Immunol. 12, 769242 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Singh, P. & Kemper, C. Complement, complosome, and complotype: a perspective. Eur. J. Immunol. 53, e2250042 (2023).

    Article  PubMed  Google Scholar 

  230. Xiao, F., Guo, J., Tomlinson, S., Yuan, G. & He, S. The role of the complosome in health and disease. Front. Immunol. 14, 1146167 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Desai, J. V. et al. C5a-licensed phagocytes drive sterilizing immunity during systemic fungal infection. Cell 186, 2802–2822.e22 (2023).

    Article  CAS  PubMed  Google Scholar 

  232. Sünderhauf, A. et al. GC1qR cleavage by caspase-1 drives aerobic glycolysis in tumor cells. Front. Oncol. 10, 575854 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Daugan, M. V. et al. Intracellular factor H drives tumor progression independently of the complement cascade. Cancer Immunol. Res. 9, 909–925 (2021).

    Article  CAS  PubMed  Google Scholar 

  234. Daugan, M. V. et al. Complement C1s and C4d as prognostic biomarkers in renal cancer: emergence of noncanonical functions of C1s. Cancer Immunol. Res. 9, 891–908 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the Kemper laboratory is supported in part by the Intramural Research Program of the National Institutes of Health, National Heart, Lung, and Blood Institute (ZIA/hl006223 to C.K.), the NIH-OXCAM Scholars Program and a Gates Cambridge Scholarship (A.C.). Work in the Maffia laboratory is supported in part by British Heart Foundation grants (PG/19/84/34771, FS/19/56/34893 A, PG/21/10541, PG/21/10557, PG/21/10634) and the Italian Ministry of University and Research (MUR) PRIN 2022 (2022T45AXH). C.M. is supported by a British Heart Foundation Senior Research Fellowship (FS/SBSRF/22/31031).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched literature for the article, made substantial contributions to discussions of the content and wrote, reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Claudia Kemper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Christoph J. Binder, who co-reviewed with Mate Kiss; Harald Langer; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maffia, P., Mauro, C., Case, A. et al. Canonical and non-canonical roles of complement in atherosclerosis. Nat Rev Cardiol (2024). https://doi.org/10.1038/s41569-024-01016-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41569-024-01016-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing