Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Applications of artificial intelligence in cardiovascular imaging

Abstract

Research into artificial intelligence (AI) has made tremendous progress over the past decade. In particular, the AI-powered analysis of images and signals has reached human-level performance in many applications owing to the efficiency of modern machine learning methods, in particular deep learning using convolutional neural networks. Research into the application of AI to medical imaging is now very active, especially in the field of cardiovascular imaging because of the challenges associated with acquiring and analysing images of this dynamic organ. In this Review, we discuss the clinical questions in cardiovascular imaging that AI can be used to address and the principal methodological AI approaches that have been developed to solve the related image analysis problems. Some approaches are purely data-driven and rely mainly on statistical associations, whereas others integrate anatomical and physiological information through additional statistical, geometric and biophysical models of the human heart. In a structured manner, we provide representative examples of each of these approaches, with particular attention to the underlying computational imaging challenges. Finally, we discuss the remaining limitations of AI approaches in cardiovascular imaging (such as generalizability and explainability) and how they can be overcome.

Key points

  • Artificial intelligence (AI) algorithms have shown impressive results in specific and often time-consuming cardiovascular imaging tasks such as image segmentation, anomaly detection and patient selection; however, these applications are limited to specific tasks in the clinical workflow.

  • In cardiovascular imaging, AI algorithms are often purely data-driven but can be improved when associated with biophysical models of the heart, which enables the integration of pre-existing knowledge of human anatomy and physiology.

  • A bottleneck in AI applications often lies in the collection of imaging data and their annotation by experts, which is limited by the lack of resources and expertise; therefore, the creation of large databases must be a community effort.

  • The appropriate integration of AI algorithms into clinical workflows remains an unresolved problem; important security, privacy and explainability issues must be resolved to achieve a sufficiently high level of trust.

  • AI algorithms have the potential to enrich the amount and the robustness of information extracted from cardiac images, while at the same time redistributing physician time and work towards patient interaction and complex decision-making tasks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinical workflow, AI-based algorithms and AI-supported decision-making.
Fig. 2: Approaches to machine learning in cardiovascular imaging.
Fig. 3: AI-based computational imaging and AI-supported decision-making algorithms.
Fig. 4: Complementarity between AI methods and biophysical modelling.
Fig. 5: Major challenges to the application of AI to cardiovascular imaging.

Similar content being viewed by others

References

  1. Greenspan, H., van Ginneken, B. & Summers, R. M. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35, 1153–1159 (2016).

    Article  Google Scholar 

  2. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Dey, D. et al. Artificial intelligence in cardiovascular imaging. J. Am. Coll. Cardiol. 73, 1317–1335 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Siegersma, K. R. et al. Artificial intelligence in cardiovascular imaging: state of the art and implications for the imaging cardiologist. Neth. Heart J. 27, 403–413 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Henglin, M. et al. Machine learning approaches in cardiovascular imaging. Circ. Cardiovasc. Imaging 10, e005614 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. O’Regan, D. P. Putting machine learning into motion: applications in cardiovascular imaging. Clin. Radiol. 75, 33–37 (2019).

    Article  PubMed  Google Scholar 

  7. Seetharam, K., Shrestha, S. & Sengupta, P. P. Artificial intelligence in cardiovascular medicine. Curr. Treat. Options Cardiovasc. Med. 21, 25 (2019).

    Article  PubMed  Google Scholar 

  8. Litjens, G. et al. State-of-the-art deep learning in cardiovascular image analysis. JACC Cardiovasc. Imaging 12, 1549–1565 (2019).

    Article  PubMed  Google Scholar 

  9. Leiner, T. et al. Machine learning in cardiovascular magnetic resonance: basic concepts and applications. J. Cardiovasc. Magn. Reson. 21, 61 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lundervold, A. S. & Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys. 29, 102–127 (2019).

    Article  PubMed  Google Scholar 

  11. Hampe, N., Wolterink, J. M., van Velzen, S. G. M., Leiner, T. & Išgum, I. Machine learning for assessment of coronary artery disease in cardiac CT: a survey. Front. Cardiovasc. Med. 6, 172 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Alsharqi, M. et al. Artificial intelligence and echocardiography. Echo Res. Pract. 5, R115–R125 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Sloun, R. J. G., Cohen, R. & Eldar, Y. C. Deep learning in ultrasound imaging. Proc. IEEE 108, 11–29 (2020).

    Article  Google Scholar 

  14. Cluitmans, M. et al. Validation and opportunities of electrocardiographic imaging: from technical achievements to clinical applications. Front. Physiol. 9, 1305 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Alawad, M. & Wang, L. Learning domain shift in simulated and clinical data: localizing the origin of ventricular activation from 12-lead electrocardiograms. IEEE Trans. Med. Imaging 38, 1172–1184 (2019).

    Article  PubMed  Google Scholar 

  16. Bacoyannis, T., Krebs, J., Cedilnik, N., Cochet, H. & Sermesant, M. in Functional Imaging and Modeling of the Heart Ch. 3 (eds Coudière, Y., Ozenne, V., Vigmond, E. & Zemzemi, N.) 20–28 (Springer, 2019).

  17. Bai, W. et al. A population-based phenome-wide association study of cardiac and aortic structure and function. Nat. Med. 26, 1654–1662 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Petersen, S. E., Abdulkareem, M. & Leiner, T. Artificial intelligence will transform cardiac imaging — opportunities and challenges. Front. Cardiovasc. Med. 6, 169 (2019).

    Article  Google Scholar 

  19. Attia, Z. I. et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat. Med. 25, 70–74 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Bernard, O. et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37, 2514–2525 (2018).

    Article  PubMed  Google Scholar 

  21. Zhang, N. et al. Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine MRI. Radiology 291, 606–617 (2019).

    Article  PubMed  Google Scholar 

  22. Bello, G. A. et al. Deep learning cardiac motion analysis for human survival prediction. Nat. Mach. Intell. 1, 95–104 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bruse, J. L. et al. in Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges Ch. 3 (eds Camara, O. et al.) 21–29 (Springer, 2016).

  24. Leonardi, B. et al. Computational modelling of the right ventricle in repaired tetralogy of Fallot: can it provide insight into patient treatment? Eur. Heart J. Cardiovasc. Imaging 14, 381–386 (2013).

    Article  PubMed  Google Scholar 

  25. Grbic, S. et al. Personalized mitral valve closure computation and uncertainty analysis from 3D echocardiography. Med. Image Anal. 35, 238–249 (2017).

    Article  PubMed  Google Scholar 

  26. European Society of Radiology. What the radiologist should know about artificial intelligence — an ESR white paper. Insights Imaging 10, 44 (2019).

    Article  Google Scholar 

  27. James, G., Witten, D., Hastie, T. & Tibshirani, R. in An Introduction to Statistical Learning Ch. 2 26–28 (Springer, 2013).

  28. Hu, S.-Y. et al. Can machine learning improve patient selection for cardiac resynchronization therapy? PLoS ONE 14, e0222397 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H. & Aerts, H. J. W. L. Artificial intelligence in radiology. Nat. Rev. Cancer 18, 500–510 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cheplygina, V., de Bruijne, M. & Pluim, J. P. W. Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Med. Image Anal. 54, 280–296 (2019).

    Article  PubMed  Google Scholar 

  31. Mlynarski, P., Delingette, H., Criminisi, A. & Ayache, N. Deep learning with mixed supervision for brain tumor segmentation. J. Med. Imaging 6, 034002 (2019).

    Article  Google Scholar 

  32. Rueckert, D. & Schnabel, J. A. Model-based and data-driven strategies in medical image computing. Proc. IEEE 108, 110–124 (2020).

    Article  Google Scholar 

  33. Saba, L. et al. The present and future of deep learning in radiology. Eur. J. Radiol. 114, 14–24 (2019).

    Article  PubMed  Google Scholar 

  34. Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017).

    Article  PubMed  Google Scholar 

  35. Ronneberger, O., Fischer, P. & Brox, T. in Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015 (eds Navab, N., Hornegger, J., Wells, W. M. & Frangi, A. F.) 234–241 (Springer, 2015).

  36. Goodfellow, I. et al. in Advances in Neural Information Processing Systems 27 (eds Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D. & Weinberger, K. Q.) 2672–2680 (Curran Associates, 2014).

  37. Kingma, D. P. & Welling, M. An introduction to variational autoencoders. Found. Trends Mach. Learn. 12, 307–392 (2019).

    Article  Google Scholar 

  38. Pesapane, F., Codari, M. & Sardanelli, F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur. Radiol. Exp. 2, 35 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bhuva, A. et al. A multicenter, scan-rescan, human and machine learning CMR study to test generalizability and precision in imaging biomarker analysis. Circ. Cardiovasc. Imaging 12, e009214 (2019).

    Article  PubMed  Google Scholar 

  40. Oksuz, I. et al. Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning. Med. Image Anal. 55, 136–147 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Oksuz, I. et al. in Medical Image Computing and Computer Assisted Intervention — MICCAI 2019 (eds Shen, D. et al.) 695–703 (Springer, 2019).

  42. Schlemper, J. et al. in Medical Image Computing and Computer Assisted Intervention — MICCAI 2019 (eds Shen, D. et al.) 57–64 (Springer, 2019).

  43. Hyun, C. M., Kim, H. P., Lee, S. M., Lee, S. & Seo, J. K. Deep learning for undersampled MRI reconstruction. Phys. Med. Biol. 63, 135007 (2018).

    Article  PubMed  Google Scholar 

  44. Qin, C. et al. Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 38, 280–290 (2019).

    Article  PubMed  Google Scholar 

  45. Bustin, A., Fuin, N., Botnar, R. M. & Prieto, C. From compressed-sensing to artificial intelligence-based cardiac MRI reconstruction. Front. Cardiovasc. Med. 7, 17 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Oksuz, I. et al. Magnetic resonance fingerprinting using recurrent neural networks. IEEE Int. Symp. Biomed. Imaging https://doi.org/10.1109/ISBI.2019.8759502 (2019).

  47. Willemink, M. J. & Noël, P. B. The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence. Eur. Radiol. 29, 2185–2195 (2019).

    Article  PubMed  Google Scholar 

  48. Green, M., Marom, E. M., Konen, E., Kiryati, N. & Mayer, A. 3-D Neural denoising for low-dose Coronary CT Angiography (CCTA). Comput. Med. Imaging Graph. 70, 185–191 (2018).

    Article  PubMed  Google Scholar 

  49. Lossau, T. et al. Motion artifact recognition and quantification in coronary CT angiography using convolutional neural networks. Med. Image Anal. 52, 68–79 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, L. et al. in Simulation and Synthesis in Medical Imaging (eds Tsaftaris, S. A., Gooya, A., Frangi, A. F. & Prince, J. L.) 138–145 (Springer, 2016).

  51. Biasiolli, L. et al. Automated localization and quality control of the aorta in cine CMR can significantly accelerate processing of the UK Biobank population data. PLoS ONE 14, e0212272 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tarroni, G. et al. Learning-based quality control for cardiac MR images. IEEE Trans. Med. Imaging 38, 1127–1138 (2019).

    Article  PubMed  Google Scholar 

  53. Zhang, L. et al. Automatic assessment of full left ventricular coverage in cardiac cine magnetic resonance imaging with fisher discriminative 3D CNN. IEEE Trans. Biomed. Eng. 66, 1975–1986 (2018).

    Article  Google Scholar 

  54. Dong, J. et al. A generic quality control framework for fetal ultrasound cardiac four-chamber planes. IEEE J. Biomed. Health Inform. 24, 931–942 (2019).

    Article  PubMed  Google Scholar 

  55. Robinson, R. et al. Automated quality control in image segmentation: application to the UK Biobank cardiovascular magnetic resonance imaging study. J. Cardiovasc. Magn. Reson. 21, 18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Albà, X. et al. Automatic initialization and quality control of large-scale cardiac MRI segmentations. Med. Image Anal. 43, 129–141 (2018).

    Article  PubMed  Google Scholar 

  57. Audelan, B. & Delingette, H. in Medical Image Computing and Computer Assisted Intervention — MICCAI 2019 (eds Shen, D. et al.) 21–29 (Springer, 2019).

  58. Vigneault, D. M., Xie, W., Ho, C. Y., Bluemke, D. A. & Noble, J. A. Ω-Net (Omega-Net): Fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks. Med. Image Anal. 48, 95–106 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zheng, Q., Delingette, H., Duchateau, N. & Ayache, N. 3-D consistent and robust segmentation of cardiac images by deep learning with spatial propagation. IEEE Trans. Med. Imaging 37, 2137–2148 (2018).

    Article  PubMed  Google Scholar 

  60. Ambrosini, P. et al. in Medical Image Computing and Computer-Assisted Intervention — MICCAI 2017 (eds Descoteaux, M. et al) 577–585 (Springer, 2017).

  61. Ghorbani, A. et al. Deep learning interpretation of echocardiograms. NPJ Digital Med. 3, 10 (2020).

    Article  Google Scholar 

  62. Ghesu, F.-C. et al. Multi-scale deep reinforcement learning for real-time 3D-landmark detection in CT scans. IEEE Trans. Pattern Anal. Mach. Intell. 41, 176–189 (2019).

    Article  PubMed  Google Scholar 

  63. Noothout, J. M. H. et al. Deep learning-based regression and classification for automatic landmark localization in medical images. IEEE Trans. Med. Imaging 39, 4011–4022 (2020).

    Article  PubMed  Google Scholar 

  64. Chen, C. et al. Deep learning for cardiac image segmentation: a review. Front. Cardiovasc. Med. 7, 25 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Isensee, F. et al. in Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges (eds Pop, M. et al.) 120–129 (Springer, 2018).

  66. Clough, J. R., Oksuz, I., Byrne, N., Schnabel, J. A. & King, A. P. in Information Processing in Medical Imaging (eds Chung, A. C. S., Gee, J. C., Yushkevich, P. A. & Bao, S.) 16–28 (Springer, 2019).

  67. Duan, J. et al. Automatic 3D Bi-ventricular segmentation of cardiac images by a shape-refined multi- task deep learning approach. IEEE Trans. Med. Imaging 38, 2151–2164 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Albà, X. et al. An algorithm for the segmentation of highly abnormal hearts using a generic statistical shape model. IEEE Trans. Med. Imaging 35, 845–859 (2016).

    Article  PubMed  Google Scholar 

  69. Liao, F., Chen, X., Hu, X. & Song, S. Estimation of the volume of the left ventricle from MRI images using deep neural networks. IEEE Trans. Cybern. 49, 495–504 (2019).

    Article  PubMed  Google Scholar 

  70. Margeta, J. et al. in Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges (eds Camara, O. et al.) 49–56 (Springer, 2014).

  71. Bai, W. et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J. Cardiovasc. Magn. Reson. 20, 65 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gilbert, K. et al. Independent left ventricular morphometric atlases show consistent relationships with cardiovascular risk factors: A UK biobank study. Sci. Rep. 9, 1130 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Lee, M. C. H., Petersen, K., Pawlowski, N., Glocker, B. & Schaap, M. Tetris: template transformer networks for image segmentation with shape priors. IEEE Trans. Med. Imaging 38, 2596–2606 (2019).

    Article  PubMed  Google Scholar 

  74. Zhuang, X. et al. Evaluation of algorithms for multi-modality whole heart segmentation: an open-access grand challenge. Med. Image Anal. 58, 101537 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gilbert, A. et al. in Smart Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis (eds Wang, Q. et al.) 29–37 (Springer, 2019).

  76. Huang, X. et al. Contour tracking in echocardiographic sequences via sparse representation and dictionary learning. Med. Image Anal. 18, 253–271 (2014).

    Article  PubMed  Google Scholar 

  77. Leclerc, S. et al. Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans. Med. Imaging 38, 2198–2210 (2019).

    Article  PubMed  Google Scholar 

  78. Asch, F. M. et al. Automated echocardiographic quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert. Circ. Cardiovasc. Imaging 12, e009303 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Andreassen, B. S., Veronesi, F., Gerard, O., Solberg, A. H. S. & Samset, E. Mitral annulus segmentation using deep learning in 3-D transesophageal echocardiography. IEEE J. Biomed. Health Inform. 24, 994–1003 (2020).

    Article  PubMed  Google Scholar 

  80. Wolterink, J. M., Leiner, T. & Išgum, I. in Graph Learning in Medical Imaging (eds Zhang, D., Zhou, L., Jie, B. & Liu, M.) 62–69 (Springer, 2019).

  81. Itu, L. et al. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J. Appl. Physiol. 121, 42–52 (2016).

    Article  PubMed  Google Scholar 

  82. Yang, S. et al. Deep learning segmentation of major vessels in X-ray coronary angiography. Sci. Rep. 9, 16897 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Duchateau, N., King, A. P. & De Craene, M. Machine learning approaches for myocardial motion and deformation analysis. Front. Cardiovasc. Med. 6, 190 (2019).

    Article  PubMed  Google Scholar 

  84. Krebs, J., Delingette, H., Mailhe, B., Ayache, N. & Mansi, T. Learning a probabilistic model for diffeomorphic registration. IEEE Trans. Med. Imaging 38, 2165–2176 (2019).

    Article  PubMed  Google Scholar 

  85. Zheng, Q., Delingette, H. & Ayache, N. Explainable cardiac pathology classification on cine MRI with motion characterization by semi-supervised learning of apparent flow. Med. Image Anal. 56, 80–95 (2019).

    Article  PubMed  Google Scholar 

  86. Yan, W., Wang, Y., van der Geest, R. J. & Tao, Q. Cine MRI analysis by deep learning of optical flow: adding the temporal dimension. Comput. Biol. Med. 111, 103356 (2019).

    Article  PubMed  Google Scholar 

  87. Parajuli, N. et al. Flow network tracking for spatiotemporal and periodic point matching: applied to cardiac motion analysis. Med. Image Anal. 55, 116–135 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lu, A. et al. in Medical Image Computing and Computer-Assisted Intervention — MICCAI 2017 (eds Descoteaux, M. et al.) 323–331 (Springer, 2017).

  89. Song, S. et al. Deep motion tracking from multiview angiographic image sequences for synchronization of cardiac phases. Phys. Med. Biol. 64, 025018 (2019).

    Article  PubMed  Google Scholar 

  90. Attar, R. et al. Quantitative CMR population imaging on 20,000 subjects of the UK Biobank imaging study: LV/RV quantification pipeline and its evaluation. Med. Image Anal. 56, 26–42 (2019).

    Article  PubMed  Google Scholar 

  91. Mantilla, J. J. et al. Discriminative dictionary learning for local LV wall motion classification in cardiac MRI. Expert. Syst. Appl. 129, 286–295 (2019).

    Article  Google Scholar 

  92. Duchateau, N., De Craene, M., Piella, G. & Frangi, A. F. Constrained manifold learning for the characterization of pathological deviations from normality. Med. Image Anal. 16, 1532–1549 (2012).

    Article  PubMed  Google Scholar 

  93. Sengupta, P. P. et al. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ. Cardiovasc. Imaging 9, e004330 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Sanchez-Martinez, S. et al. Characterization of myocardial motion patterns by unsupervised multiple kernel learning. Med. Image Anal. 35, 70–82 (2017).

    Article  PubMed  Google Scholar 

  95. Meyer, H. V. et al. Genetic and functional insights into the fractal structure of the heart. Nature 584, 589–594 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zreik, M. et al. Deep learning analysis of coronary arteries in cardiac CT angiography for detection of patients requiring invasive coronary angiography. IEEE Trans. Med. Imaging 36, 1545–1557 (2019).

    Google Scholar 

  97. Martin, S. S. et al. Evaluation of a deep learning-based automated CT coronary artery calcium scoring algorithm. JACC Cardiovasc. Imaging 13, 524–526 (2019).

    Article  PubMed  Google Scholar 

  98. Cikes, M. et al. Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy. Eur. J. Heart Fail. 21, 74–85 (2019).

    Article  PubMed  Google Scholar 

  99. Alis, D., Guler, A., Yergin, M. & Asmakutlu, O. Assessment of ventricular tachyarrhythmia in patients with hypertrophic cardiomyopathy with machine learning-based texture analysis of late gadolinium enhancement cardiac MRI. Diagn. Interv. Imaging 101, 137–146 (2019).

    Article  PubMed  Google Scholar 

  100. Hilbert, A. et al. Data-efficient deep learning of radiological image data for outcome prediction after endovascular treatment of patients with acute ischemic stroke. Comput. Biol. Med. 115, 103516 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Bruse, J. L. et al. Detecting clinically meaningful shape clusters in medical image data: metrics analysis for hierarchical clustering applied to healthy and pathological aortic arches. IEEE Trans. Biomed. Eng. 64, 2373–2383 (2017).

    Article  PubMed  Google Scholar 

  102. Hunter, P. The virtual physiological human: the physiome project aims to develop reproducible, multiscale models for clinical practice. IEEE Pulse 7, 36–42 (2016).

    Article  PubMed  Google Scholar 

  103. Ayache, N. Medical imaging informatics: towards a personalized computational patient. Yearb. Med. Inform. 25 (Suppl. 1), S8–S9 (2016).

    Google Scholar 

  104. Bassingthwaighte, J., Hunter, P. & Noble, D. The cardiac physiome: perspectives for the future. Exp. Physiol. 94, 597–605 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Chapelle, D., Le Tallec, P., Moireau, P. & Sorine, M. Energy-preserving muscle tissue model: formulation and compatible discretizations. Int. J. Mult. Comp. Eng. 10, 189–211 (2012).

    Article  Google Scholar 

  106. Suinesiaputra, A., McCulloch, A. D., Nash, M. P., Pontre, B. & Young, A. A. Cardiac image modelling: Breadth and depth in heart disease. Med. Image Anal. 33, 38–43 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Niederer, S. A., Lumens, J. & Trayanova, N. A. Computational models in cardiology. Nat. Rev. Cardiol. 16, 100–111 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Comaniciu, D., Engel, K., Georgescu, B. & Mansi, T. Shaping the future through innovations: from medical imaging to precision medicine. Med. Image Anal. 33, 19–26 (2016).

    Article  PubMed  Google Scholar 

  109. Molléro, R. et al. Multifidelity-CMA: a multifidelity approach for efficient personalisation of 3D cardiac electromechanical models. Biomech. Model. Mechanobiol. 17, 285–300 (2018).

    Article  PubMed  Google Scholar 

  110. Corral-Acero, J. et al. The ‘Digital Twin’ to enable the vision of precision cardiology. Eur. Heart J. 41, 4556–4564 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Chabiniok, R. et al. Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface Focus. 6, 20150083 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Sermesant, M. et al. Toward patient-specific myocardial models of the heart. Heart Fail. Clin. 4, 289–301 (2008).

    Article  PubMed  Google Scholar 

  113. This, A., Morales, H. G., Bonnefous, O., Fernández, M. A. & Gerbeau, J.-F. A pipeline for image based intracardiac CFD modeling and application to the evaluation of the PISA method. Comput. Methods Appl. Mech. Eng. 358, 112627 (2020).

    Article  Google Scholar 

  114. Vignon-Clementel, I. E., Marsden, A. L. & Feinstein, J. A. A primer on computational simulation in congenital heart disease for the clinician. Prog. Pediatr. Cardiol. 30, 3–13 (2010).

    Article  Google Scholar 

  115. Sermesant, M. et al. Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation. Med. Image Anal. 16, 201–215 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Chen, Z. et al. Biophysical modeling predicts ventricular tachycardia inducibility and circuit morphology: a combined clinical validation and computer modeling approach. J. Cardiovasc. Electrophysiol. 27, 851–860 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Baillargeon, B., Rebelo, N., Fox, D. D., Taylor, R. L. & Kuhl, E. The living heart project: a robust and integrative simulator for human heart function. Eur. J. Mech. A Solids 48, 38–47 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kayvanpour, E. et al. Towards personalized cardiology: multi-scale modeling of the failing heart. PLoS ONE 10, e0134869 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Zhang, F. et al. Towards patient-specific modeling of mitral valve repair: 3D transesophageal echocardiography-derived parameter estimation. Med. Image Anal. 35, 599–609 (2017).

    Article  PubMed  Google Scholar 

  120. Lluch, È. et al. Breaking the state of the heart: meshless model for cardiac mechanics. Biomech. Model. Mechanobiol. 18, 1549–1561 (2019).

    Article  PubMed  Google Scholar 

  121. Garny, A., Noble, D. & Kohl, P. Dimensionality in cardiac modelling. Prog. Biophys. Mol. Biol. 87, 47–66 (2005).

    Article  PubMed  Google Scholar 

  122. Neumann, D. et al. A self-taught artificial agent for multi-physics computational model personalization. Med. Image Anal. 34, 52–64 (2016).

    Article  PubMed  Google Scholar 

  123. Lozoya, R. C. et al. Model-based feature augmentation for cardiac ablation target learning from images. IEEE Trans. Biomed. Eng. 66, 30–40 (2018).

    Article  PubMed  Google Scholar 

  124. Alber, M. et al. Integrating machine learning and multiscale modeling-perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. NPJ Digital Med. 2, 115 (2019).

    Article  Google Scholar 

  125. Prakosa, A. et al. Generation of synthetic but visually realistic time series of cardiac images combining a biophysical model and clinical images. IEEE Trans. Med. Imaging 32, 99–109 (2013).

    Article  PubMed  Google Scholar 

  126. Duchateau, N., Sermesant, M., Delingette, H. & Ayache, N. Model-based generation of large databases of cardiac images: synthesis of pathological cine MR sequences from real healthy cases. IEEE Trans. Med. Imaging 37, 755–766 (2018).

    Article  PubMed  Google Scholar 

  127. Heimann, T., Mountney, P., John, M. & Ionasec, R. Real-time ultrasound transducer localization in fluoroscopy images by transfer learning from synthetic training data. Med. Image Anal. 18, 1320–1328 (2014).

    Article  PubMed  Google Scholar 

  128. Kissas, G. et al. Machine learning in cardiovascular flows modeling: predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 358, 112623 (2020).

    Article  Google Scholar 

  129. Ayed, I., Cedilnik, N., Gallinari, P. & Sermesant, M. in Functional Imaging and Modeling of the Heart (eds Coudière, Y., Ozenne, V., Vigmond, E. & Zemzemi, N.) 55–63 (Springer, 2019).

  130. Coenen, A. et al. Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography-based fractional flow reserve: result from the MACHINE consortium. Circ. Cardiovasc. Imaging 11, e007217 (2018).

    Article  PubMed  Google Scholar 

  131. Papademetris, X., Sinusas, A. J., Dione, D. P. & Duncan, J. S. Estimation of 3D left ventricular deformation from echocardiography. Med. Image Anal. 5, 17–28 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Finsberg, H. et al. Computational quantification of patient-specific changes in ventricular dynamics associated with pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol. 317, H1363–H1375 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Giffard-Roisin, S. et al. Transfer learning from simulations on a reference anatomy for ECGI in personalized cardiac resynchronization therapy. IEEE Trans. Biomed. Eng. 66, 343–353 (2019).

    Article  PubMed  Google Scholar 

  134. Meister, F. et al. Deep learning acceleration of total Lagrangian explicit dynamics for soft tissue mechanics. Comput. Methods Appl. Mech. Eng. 358, 112628 (2020).

    Article  Google Scholar 

  135. Konukoglu, E. et al. Efficient probabilistic model personalization integrating uncertainty on data and parameters: application to eikonal-diffusion models in cardiac electrophysiology. Prog. Biophys. Mol. Biol. 107, 134–146 (2011).

    Article  PubMed  Google Scholar 

  136. The Medical Futurist. FDA approvals for smart algorithms in medicine in one giant infographic. Medical Futurist https://medicalfuturist.com/fda-approvals-for-algorithms-in-medicine (2019).

  137. Saltybaeva, N., Schmidt, B., Wimmer, A., Flohr, T. & Alkadhi, H. Precise and automatic patient positioning in computed tomography: avatar modeling of the patient surface using a 3-dimensional camera. Invest. Radiol. 53, 641–646 (2018).

    Article  PubMed  Google Scholar 

  138. Taylor, C. A., Fonte, T. A. & Min, J. K. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J. Am. Coll. Cardiol. 61, 2233–2241 (2013).

    Article  PubMed  Google Scholar 

  139. Lu, M. T. et al. Noninvasive FFR derived from coronary CT angiography: management and outcomes in the PROMISE trial. JACC Cardiovasc. Imaging 10, 1350–1358 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Bluemke, D. A. Radiology in 2018: are you working with AI or being replaced by AI? Radiology 287, 365–366 (2018).

    Article  PubMed  Google Scholar 

  141. Willemink, M. J. et al. Photon-counting CT: technical principles and clinical prospects. Radiology 289, 293–312 (2018).

    Article  PubMed  Google Scholar 

  142. Weese, J. & Lorenz, C. Four challenges in medical image analysis from an industrial perspective. Med. Image Anal. 33, 44–49 (2016).

    Article  PubMed  Google Scholar 

  143. Hutter, F., Kotthoff, L. & Vanschoren, J. (eds) Automated Machine Learning: Methods, Systems, Challenges (Springer, 2019).

  144. Minter, S. et al. Crowdsourcing consensus: proposal of a novel method for assessing accuracy in echocardiography interpretation. Int. J. Cardiovasc. Imaging 34, 1725–1730 (2018).

    Article  PubMed  Google Scholar 

  145. Pace, D. F. et al. Interactive whole-heart segmentation in congenital heart disease. Med. Image Comput. Comput. Assist. Interv. 9351, 80–88 (2015).

    PubMed  PubMed Central  Google Scholar 

  146. Chen, L. et al. Self-supervised learning for medical image analysis using image context restoration. Med. Image Anal. 58, 101539 (2019).

    Article  PubMed  Google Scholar 

  147. Arafati, A. et al. Artificial intelligence in pediatric and adult congenital cardiac MRI: an unmet clinical need. Cardiovasc. Diagn. Ther. 9 (Suppl. 2), S310–S325 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Chartsias, A. et al. Disentangled representation learning in cardiac image analysis. Med. Image Anal. 58, 101535 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Sengupta, P. P. et al. Proposed requirements for cardiovascular imaging-related machine learning evaluation (PRIME): A checklist: reviewed by the American College of Cardiology Healthcare Innovation Council. JACC Cardiovasc. Imaging 13, 2017–2035 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Barredo Arrieta, A. et al. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion. 58, 82–115 (2020).

    Article  Google Scholar 

  151. Cabitza, F., Rasoini, R. & Gensini, G. F. Unintended consequences of machine learning in medicine. JAMA 318, 517–518 (2017).

    Article  PubMed  Google Scholar 

  152. European Commission. Ethics guidelines for trustworthy AI. European Commission https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai (2019).

  153. Recht, M. P. et al. Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations. Eur. Radiol. 30, 3576–3584 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Part of the authors’ work has been supported by the French Government, through the National Research Agency (ANR): 3IA Côte d’Azur (ANR-19-P3IA-0002), IHU Liryc (ANR-10-IAHU-04) and Equipex MUSIC (ANR-11-EQPX-0030). The research leading to these results has also received European funding from the ERC starting grant ECSTATIC (715093).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to researching data for the article, discussing its content, writing the manuscript, and reviewing and editing it before submission.

Corresponding author

Correspondence to Maxime Sermesant.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks T. Leiner, P. Sengupta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CAMUS: https://www.creatis.insa-lyon.fr/Challenge/camus/

Kaggle: https://www.kaggle.com/datasets

PyTorch: https://pytorch.org/

STACOM: http://stacom.cardiacatlas.org/

TensorFlow: https://www.tensorflow.org/

UK Biobank: https://www.ukbiobank.ac.uk/

Glossary

Artificial intelligence

(AI). In general, algorithms that mimic human intelligence; in this article, algorithms that interpret medical images and data to assist the diagnosis, prognosis and therapy of cardiovascular diseases.

Deep learning

Machine learning with artificial neural networks that have a large number of hidden layers.

Features

Distinctive attributes of an image or a signal.

Convolutional neural networks

Artificial neural network using convolution operations to compute features within its layers.

Convolution operations

The weighted sum of neighbouring pixel values in an image.

Generalizability

The ability of a machine learning algorithm to perform sufficiently well on a new data set unseen during the training stage; also known as robustness.

Biophysical modelling

Mathematical representation of biological phenomena using methods from physics.

Machine learning

The capacity of an algorithm to solve a task by exploiting training examples, instead of following predefined explicit instructions.

Accuracy

Measurement of agreement between the algorithm prediction and the expected result.

Supervised learning

Learning process using user-defined annotations on a training data set.

Ground truth

Data corresponding to the expected result of an algorithm.

Image segmentation

Specifying regions with labels in a medical image.

Image registration

Geometric transformation of an image to align it on another image.

Motion analysis

Computation and analysis of apparent displacements from time series of images.

Overfitting

When an algorithm is adjusted too closely to the training data during learning at the expense of generalizability to new data.

Image annotations

User-defined information associated with the input data.

Unsupervised learning

Learning process without user-defined annotations.

Transfer learning

Adjustment of a machine learning algorithm from one task to another.

Artificial neural networks

Algorithm mapping input to output data, involving multiple layers of non-linear computations.

Cost function

Criterion to be minimized during the training phase of machine learning algorithms.

MRI fingerprinting

Acquisition of quantitative information from MRI scans that enables clinical decision-making on the basis of digital data rather than visual impressions.

Multi-scale

Involving several spatial or temporal resolutions of observation.

Multi-physics

Involving several different physical phenomena (such as electrophysiology and solid or fluid mechanics).

Digital twin

Patient-specific computational model (of the heart) to visualize and simulate anatomy and physiology.

Causal

In which one event (cause) contributes to the occurrence of another event (effect).

Deterministic

A system in which a given input always produces the same output (as opposed to probabilistic systems).

Mechanistic

Providing explicit information about the underlying biological or physical processes.

Uncertainty quantification

Determination of how the output of an algorithm varies if some of its parameters or input are not exactly known.

Explainability

An explainable algorithm must produce details that make its process easy to understand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sermesant, M., Delingette, H., Cochet, H. et al. Applications of artificial intelligence in cardiovascular imaging. Nat Rev Cardiol 18, 600–609 (2021). https://doi.org/10.1038/s41569-021-00527-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-021-00527-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing