Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Combinatorial strategies to target RAS-driven cancers

Abstract

Although RAS was formerly considered undruggable, various agents that inhibit RAS or specific RAS oncoproteins have now been developed. Indeed, the importance of directly targeting RAS has recently been illustrated by the clinical success of mutant-selective KRAS inhibitors. Nevertheless, responses to these agents are typically incomplete and restricted to a subset of patients, highlighting the need to develop more effective treatments, which will likely require a combinatorial approach. Vertical strategies that target multiple nodes within the RAS pathway to achieve deeper suppression are being investigated and have precedence in other contexts. However, alternative strategies that co-target RAS and other therapeutic vulnerabilities have been identified, which may mitigate the requirement for profound pathway suppression. Regardless, the efficacy of any given approach will likely be dictated by genetic, epigenetic and tumour-specific variables. Here we discuss various combinatorial strategies to treat KRAS-driven cancers, highlighting mechanistic concepts that may extend to tumours harbouring other RAS mutations. Although many promising combinations have been identified, clinical responses will ultimately depend on whether a therapeutic window can be achieved and our ability to prospectively select responsive patients. Therefore, we must continue to develop and understand biologically diverse strategies to maximize our likelihood of success.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual approaches for developing combination strategies.
Fig. 2: The RAS signalling pathway and inhibitors in clinical and preclinical development.
Fig. 3: Combinatorial strategy type I: vertical inhibition.
Fig. 4: Combinatorial strategy type II: inhibition of protective adaptive responses.
Fig. 5: Combinatorial strategy type III: co-targeting a critical downstream node.
Fig. 6: Combinatorial strategy type IV: capitalize on other cancer-associated vulnerabilities.

Similar content being viewed by others

References

  1. Simanshu, D. K., Nissley, D. V. & McCormick, F. RAS proteins and their regulators in human disease. Cell 170, 17–33 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. The AACR Project GENIE Consortium AACR project GENIE: powering precision medicine through an international consortium. Cancer Discov. 7, 818–831 (2017).

    PubMed Central  Google Scholar 

  3. Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947 (2019).

    CAS  PubMed  Google Scholar 

  5. Prior, I. A., Hood, F. E. & Hartley, J. L. The frequency of Ras mutations in cancer. Cancer Res. 80, 2969–2974 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Moore, A. R., Rosenberg, S. C., McCormick, F. & Malek, S. RAS-targeted therapies: is the undruggable drugged? Nat. Rev. Drug. Discov. 19, 533–552 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Punekar, S. R., Velcheti, V., Neel, B. G. & Wong, K.-K. The current state of the art and future trends in RAS-targeted cancer therapies. Nat. Rev. Clin. Oncol. 19, 637–655 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Peters, S., Mok, T., Passaro, A. & Jänne, P. A. The promising evolution of targeted therapeutic strategies in cancer. Cancer Discov. 11, 810–814 (2021).

    CAS  PubMed  Google Scholar 

  9. Konieczkowski, D. J., Johannessen, C. M. & Garraway, L. A. A convergence-based framework for cancer drug resistance. Cancer Cell 33, 801–815 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ryan, M. B. & Corcoran, R. B. Therapeutic strategies to target RAS-mutant cancers. Nat. Rev. Clin. Oncol. 15, 709–720 (2018).

    CAS  PubMed  Google Scholar 

  11. Gysin, S., Salt, M., Young, A. & McCormick, F. Therapeutic strategies for targeting Ras proteins. Genes. Cancer 2, 359–372 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Karoulia, Z., Gavathiotis, E. & Poulikakos, P. I. New perspectives for targeting RAF kinase in human cancer. Nat. Rev. Cancer 17, 676–691 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, C. et al. RAF inhibitors that evade paradoxical MAPK pathway activation. Nature 526, 583–586 (2015).

    CAS  PubMed  Google Scholar 

  14. Yao, Z. et al. RAF inhibitor PLX8394 selectively disrupts BRAF dimers and RAS-independent BRAF-mutant-driven signaling. Nat. Med. 25, 284–291 (2019).

    CAS  PubMed  Google Scholar 

  15. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04916236 (2022).

  16. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05375994 (2023).

  17. Sullivan, R. J. et al. First-in-class ERK1/2 inhibitor ulixertinib (BVD-523) in patients with MAPK mutant advanced solid tumors: results of a phase I dose-escalation and expansion study. Cancer Discov. 8, 184–195 (2018).

    CAS  PubMed  Google Scholar 

  18. Bhagwat, S. V. et al. ERK inhibitor LY3214996 targets ERK pathway-driven cancers: a therapeutic approach toward precision medicine. Mol. Cancer Ther. 19, 325–336 (2020).

    CAS  PubMed  Google Scholar 

  19. Dombi, E. et al. Activity of selumetinib in neurofibromatosis type 1-related plexiform neurofibromas. N. Engl. J. Med. 375, 2550–2560 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kun, E., Tsang, Y. T. M., Ng, C. W., Gershenson, D. M. & Wong, K. K. MEK inhibitor resistance mechanisms and recent developments in combination trials. Cancer Treat. Rev. 92, 102137 (2021).

    CAS  PubMed  Google Scholar 

  21. Han, J. et al. MEK inhibitors for the treatment of non-small cell lung cancer. J. Hematol. Oncol. 14, 1 (2021).

    PubMed  PubMed Central  Google Scholar 

  22. Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-RasG12C inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013). This work is the first report of a direct KRAS-G12C small molecule inhibitor.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lim, S. M. et al. Therapeutic targeting of oncogenic K-Ras by a covalent catalytic site inhibitor. Angew. Chem. Int. Ed. Engl. 53, 199–204 (2014).

    CAS  PubMed  Google Scholar 

  24. Skoulidis, F. et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N. Engl. J. Med. 384, 2371–2381 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jänne, P. A. et al. Adagrasib in non-small-cell lung cancer harboring a KRASG12C mutation. N. Engl. J. Med. 387, 120–131 (2022).

    PubMed  Google Scholar 

  26. Canon, J. et al. The clinical KRASG12C inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).

    CAS  PubMed  Google Scholar 

  27. Hallin, J. et al. The KRASG12C inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov. 10, 54–71 (2020).

    CAS  PubMed  Google Scholar 

  28. Hofmann, M. H., Gerlach, D., Misale, S., Petronczki, M. & Kraut, N. Expanding the reach of precision oncology by drugging all KRAS mutants. Cancer Discov. 12, 924–937 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05379985 (2024).

  30. Wang, X. et al. Identification of MRTX1133, a noncovalent, potent, and selective KRASG12D inhibitor. J. Med. Chem. 65, 3123–3133 (2022). This study describes the development of the first reported small molecule inhibitor with selective activity against KRAS-G12D and represents ongoing efforts to expand the druggable RAS repertoire beyond KRAS-G12C.

    CAS  PubMed  Google Scholar 

  31. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05737706 (2023).

  32. Zhou, C. et al. Design, synthesis, and biological evaluation of potent and selective PROTAC degraders of oncogenic KRASG12D. J. Med. Chem. 67, 1147–1167 (2024).

    CAS  PubMed  Google Scholar 

  33. Tanaka, N. et al. Clinical acquired resistance to KRASG12C inhibition through a novel KRAS switch-II pocket mutation and polyclonal alterations converging on RAS–MAPK reactivation. Cancer Discov. 11, 1913–1922 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Schulze, C. J. et al. Chemical remodeling of a cellular chaperone to target the active state of mutant KRAS. Science 381, 794–799 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Molina-Arcas, M., Samani, A. & Downward, J. Drugging the undruggable: advances on RAS targeting in cancer. Genes 12, 899 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sacher, A. et al. Single-agent divarasib (GDC-6036) in solid tumors with a KRAS G12C mutation. N. Engl. J. Med. 389, 710–721 (2023).

    CAS  PubMed  Google Scholar 

  37. Awad, M. M. et al. Acquired resistance to KRASG12C inhibition in cancer. N. Engl. J. Med. 384, 2382–2393 (2021). This study describes genetic alterations that mediate resistance in post-treatment tumours in patients treated with adagrasib.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao, Y. et al. Diverse alterations associated with resistance to KRASG12C inhibition. Nature 599, 679–683 (2021). This study describes genetic alterations that mediate resistance in post-treatment tumours in patients treated with sotorasib.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Van Allen, E. M. et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 4, 94–109 (2014).

    PubMed  Google Scholar 

  40. Emery, C. M. et al. MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc. Natl Acad. Sci. USA 106, 20411–20416 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ahronian, L. G. et al. Clinical acquired resistance to RAF inhibitor combinations in BRAF-mutant colorectal cancer through MAPK pathway alterations. Cancer Discov. 5, 358–367 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Negrao, M. V. et al. Comutations and KRASG12C inhibitor efficacy in advanced NSCLC. Cancer Discov. 13, 1556–1571 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Robert, C. et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med. 372, 30–39 (2015).

    PubMed  Google Scholar 

  44. Weekes, C. et al. A phase Ib study to evaluate the MEK inhibitor cobimetinib in combination with the ERK1/2 inhibitor GDC-0994 in patients with advanced solid tumors. Oncologist 25, 833-e1438 (2020).

    PubMed  PubMed Central  Google Scholar 

  45. Stathis, A. et al. Results of an open-label phase 1b study of the ERK inhibitor MK-8353 plus the MEK inhibitor selumetinib in patients with advanced or metastatic solid tumors. Invest. N. Drugs 41, 380–390 (2023).

    CAS  Google Scholar 

  46. Kim, D. et al. Pan-KRAS inhibitor disables oncogenic signalling and tumour growth. Nature 619, 160–166 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nazarian, R. et al. Melanomas acquire resistance to B-RAFV600E inhibition by RTK or N-RAS upregulation. Nature 468, 973–977 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Prahallad, A. et al. Unresponsiveness of colon cancer to BRAFV600E inhibition through feedback activation of EGFR. Nature 483, 100–103 (2012).

    CAS  PubMed  Google Scholar 

  49. Corcoran, R. B. et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2, 227–235 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun, C. et al. Intrinsic resistance to MEK inhibition in KRAS mutant lung and colon cancer through transcriptional induction of ERBB3. Cell Rep. 7, 86–93 (2014).

    CAS  PubMed  Google Scholar 

  51. Lito, P. et al. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 22, 668–682 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Douville, E. & Downward, J. EGF induced SOS phosphorylation in PC12 cells involves P90 RSK-2. Oncogene 15, 373–383 (1997).

    CAS  PubMed  Google Scholar 

  53. Hanafusa, H., Torii, S., Yasunaga, T. & Nishida, E. Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat. Cell Biol. 4, 850–858 (2002).

    CAS  PubMed  Google Scholar 

  54. Eblaghie, M. C. et al. Negative feedback regulation of FGF signaling levels by Pyst1/MKP3 in chick embryos. Curr. Biol. CB 13, 1009–1018 (2003).

    CAS  PubMed  Google Scholar 

  55. Dougherty, M. K. et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell 17, 215–224 (2005).

    CAS  PubMed  Google Scholar 

  56. Macrae, M. et al. A conditional feedback loop regulates Ras activity through EphA2. Cancer Cell 8, 111–118 (2005).

    CAS  PubMed  Google Scholar 

  57. Courtois-Cox, S. et al. A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10, 459–472 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Avraham, R. & Yarden, Y. Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat. Rev. Mol. Cell Biol. 12, 104–117 (2011).

    CAS  PubMed  Google Scholar 

  59. Chandarlapaty, S. et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 19, 58–71 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Rodrik-Outmezguine, V. S. et al. mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov. 1, 248–259 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Duncan, J. S. et al. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149, 307–321 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Long, G. V. et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N. Engl. J. Med. 371, 1877–1888 (2014).

    PubMed  Google Scholar 

  63. Corcoran, R. B. et al. Combined BRAF and MEK inhibition with dabrafenib and trametinib in BRAF V600-mutant colorectal cancer. J. Clin. Oncol. 33, 4023–4031 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Manchado, E. et al. A combinatorial strategy for treating KRAS-mutant lung cancer. Nature 534, 647–651 (2016). This study, through analysis of a trametinib-anchored short hairpin RNA knockdown screen, establishes FGFR1-mediated reactivation of the RAS pathway as resistance mechanism to MEK inhibition in KRAS-mutant lung cancer and highlights the tissue specificity of RTK-mediated resistance.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kitai, H. et al. Epithelial-to-mesenchymal transition defines feedback activation of receptor tyrosine kinase signaling induced by MEK inhibition in KRAS-mutant lung cancer. Cancer Discov. 6, 754–769 (2016). This paper, beyond the tissue specificity of RTK-mediated resistance, further divides KRAS-mutant lung cancer into epithelial and mesenchymal subtypes and highlights the unique susceptibility of each subtype to MEK inhibition combined with HER3 or FGFR1 suppression, respectively.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Arbour, K. C. et al. Phase 1 clinical trial of trametinib and ponatinib in patients with NSCLC harboring KRAS mutations. JTO Clin. Res. Rep. 3, 100256 (2022).

    PubMed  Google Scholar 

  67. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03704688 (2023).

  68. Hong, D. S. et al. KRASG12C inhibition with sotorasib in advanced solid tumors. N. Engl. J. Med. 383, 1207–1217 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Amodio, V. et al. EGFR blockade reverts resistance to KRASG12C inhibition in colorectal cancer. Cancer Discov. 10, 1129–1139 (2020). This study identifies high basal EGFR activation as a mechanism of resistance to KRAS-G12C inhibition in CRC and provides the first preclinical evidence of the therapeutic efficacy of KRAS-G12C inhibition in combination with EGFR inhibition in CRC, leading to the development of a therapeutic strategy that has been recently granted breakthrough therapy designation by the FDA.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03785249 (2023).

  71. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05198934 (2024).

  72. Fakih, M. G. et al. Sotorasib plus panitumumab in refractory colorectal cancer with mutated KRAS G12C. N. Engl. J. Med. 389, 2125–2139 (2023).

    CAS  PubMed  Google Scholar 

  73. Kuboki, Y. et al. Sotorasib with panitumumab in chemotherapy-refractory KRASG12C-mutated colorectal cancer: a phase 1b trial. Nat. Med. 30, 265–270 (2024).

    CAS  PubMed  Google Scholar 

  74. Kopetz, S. et al. Encorafenib, binimetinib, and cetuximab in BRAFV600E-mutated colorectal cancer. N. Engl. J. Med. 381, 1632–1643 (2019).

    CAS  PubMed  Google Scholar 

  75. Misale, S. et al. KRAS G12C NSCLC models are sensitive to direct targeting of KRAS in combination with PI3K inhibition. Clin. Cancer Res. 25, 796–807 (2019).

    CAS  PubMed  Google Scholar 

  76. Fedele, C. et al. SHP2 inhibition prevents adaptive resistance to MEK inhibitors in multiple cancer models. Cancer Discov. 8, 1237–1249 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zawistowski, J. S. et al. Enhancer remodeling during adaptive bypass to MEK inhibition is attenuated by pharmacologic targeting of the P-TEFb complex. Cancer Discov. 7, 302–321 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ryan, M. B. et al. Vertical pathway inhibition overcomes adaptive feedback resistance to KRASG12C inhibition. Clin. Cancer Res. 26, 1633–1643 (2020).

    CAS  PubMed  Google Scholar 

  79. Kerr, D. L., Haderk, F. & Bivona, T. G. Allosteric SHP2 inhibitors in cancer: targeting the intersection of RAS, resistance, and the immune microenvironment. Curr. Opin. Chem. Biol. 62, 1–12 (2021).

    CAS  PubMed  Google Scholar 

  80. Nichols, R. J. et al. RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers. Nat. Cell Biol. 20, 1064–1073 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lito, P., Solomon, M., Li, L.-S., Hansen, R. & Rosen, N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science 351, 604–608 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Patricelli, M. P. et al. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov. 6, 316–329 (2016).

    CAS  PubMed  Google Scholar 

  83. Mainardi, S. et al. SHP2 is required for growth of KRAS-mutant non-small-cell lung cancer in vivo. Nat. Med. 24, 961–967 (2018).

    CAS  PubMed  Google Scholar 

  84. Ruess, D. A. et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat. Med. 24, 954–960 (2018).

    CAS  PubMed  Google Scholar 

  85. Drilon, A. et al. SHP2 inhibition sensitizes diverse oncogene-addicted solid tumors to re-treatment with targeted therapy. Cancer Discov. 13, 1789–1801 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Fedele, C. et al. SHP2 inhibition diminishes KRASG12C cycling and promotes tumor microenvironment remodeling. J. Exp. Med. 218, e20201414 (2021).

    CAS  PubMed  Google Scholar 

  87. Liu, C. et al. Combinations with allosteric SHP2 inhibitor TNO155 to block receptor tyrosine kinase signaling. Clin. Cancer Res. 27, 342–354 (2021).

    CAS  PubMed  Google Scholar 

  88. Lv, Y. et al. A potent SOS1 PROTAC degrader with synergistic efficacy in combination with KRASG12C inhibitor. J. Med. Chem. https://doi.org/10.1021/acs.jmedchem.3c01598 (2024).

    Article  PubMed  Google Scholar 

  89. Hofmann, M. H. et al. BI-3406, a potent and selective SOS1–KRAS interaction inhibitor, is effective in KRAS-driven cancers through combined MEK inhibition. Cancer Discov. 11, 142–157 (2021).

    CAS  PubMed  Google Scholar 

  90. Ketcham, J. M. et al. Design and discovery of MRTX0902, a potent, selective, brain-penetrant, and orally bioavailable inhibitor of the SOS1:KRAS protein–protein interaction. J. Med. Chem. 65, 9678–9690 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04975256 (2022).

  92. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05578092 (2024).

  93. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04111458 (2024).

  94. Bian, Y. et al. Development of SOS1 inhibitor-based degraders to target KRAS -mutant colorectal cancer. J. Med. Chem. 65, 16432–16450 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhou, Z. et al. Discovery of a potent, cooperative, and selective SOS1 PROTAC ZZ151 with in vivo antitumor efficacy in KRAS-mutant cancers. J. Med. Chem. 66, 4197–4214 (2023).

    CAS  PubMed  Google Scholar 

  96. Lavoie, H. & Therrien, M. Regulation of RAF protein kinases in ERK signalling. Nat. Rev. Mol. Cell Biol. 16, 281–298 (2015).

    CAS  PubMed  Google Scholar 

  97. Cordeddu, V. et al. Mutation of SHOC2 promotes aberrant protein N-myristoylation and causes Noonan-like syndrome with loose anagen hair. Nat. Genet. 41, 1022–1026 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sulahian, R. et al. Synthetic lethal interaction of SHOC2 depletion with MEK inhibition in RAS-driven cancers. Cell Rep. 29, 118–134.e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Jones, G. G. et al. SHOC2 phosphatase-dependent RAF dimerization mediates resistance to MEK inhibition in RAS-mutant cancers. Nat. Commun. 10, 2532 (2019).

    PubMed  PubMed Central  Google Scholar 

  100. Bonsor, D. A. et al. Structure of the SHOC2–MRAS–PP1C complex provides insights into RAF activation and Noonan syndrome. Nat. Struct. Mol. Biol. 29, 966–977 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hauseman, Z. J. et al. Structure of the MRAS–SHOC2–PP1C phosphatase complex. Nature 609, 416–423 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kwon, J. J. et al. Structure–function analysis of the SHOC2–MRAS–PP1C holophosphatase complex. Nature 609, 408–415 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kimmelman, A. C. & White, E. Autophagy and tumor metabolism. Cell Metab. 25, 1037–1043 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lock, R. et al. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol. Biol. Cell 22, 165–178 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Guo, J. Y. et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes. Dev. 25, 460–470 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Yang, S. et al. Pancreatic cancers require autophagy for tumor growth. Genes. Dev. 25, 717–729 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Guo, J. Y. et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes. Dev. 27, 1447–1461 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Perera, R. M. et al. Transcriptional control of autophagy–lysosome function drives pancreatic cancer metabolism. Nature 524, 361–365 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Guo, J. Y. et al. Autophagy provides metabolic substrates to maintain energy charge and nucleotide pools in Ras-driven lung cancer cells. Genes. Dev. 30, 1704–1717 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Bryant, K. L. et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat. Med. 25, 628–640 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kinsey, C. G. et al. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat. Med. 25, 620–627 (2019). This study, together with Bryant et al. (2019), makes the surprising observation that RAS pathway inhibition increases autophagy in RAS-driven cancers, demonstrating that co-targeting this protective increase in autophagy cooperates with RAS pathway inhibition, which is a therapeutic strategy that is being tested in clinical trials.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Lee, C.-S. et al. MAP kinase and autophagy pathways cooperate to maintain RAS mutant cancer cell survival. Proc. Natl Acad. Sci. USA 116, 4508–4517 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Silvis, M. R. et al. MYC-mediated resistance to trametinib and HCQ in PDAC is overcome by CDK4/6 and lysosomal inhibition. J. Exp. Med. 220, e20221524 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04892017 (2024).

  115. Yamamoto, K. et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581, 100–105 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ravichandran, M. et al. Coordinated transcriptional and catabolic programs support iron-dependent adaptation to RAS–MAPK pathway inhibition in pancreatic cancer. Cancer Discov. 12, 2198–2219 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Santana-Codina, N. et al. NCOA4-mediated ferritinophagy is a pancreatic cancer dependency via maintenance of iron bioavailability for iron–sulfur cluster proteins. Cancer Discov. 12, 2180–2197 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Tan, N. et al. Bcl-2/Bcl-xL inhibition increases the efficacy of MEK inhibition alone and in combination with PI3 kinase inhibition in lung and pancreatic tumor models. Mol. Cancer Ther. 12, 853–864 (2013).

    PubMed  Google Scholar 

  119. Corcoran, R. B. et al. Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models. Cancer Cell 23, 121–128 (2013). This study is among the first to show that concomitant inhibition of the RAS pathway and anti-apoptotic factors is an effective therapeutic strategy for RAS-driven tumours.

    CAS  PubMed  Google Scholar 

  120. Perurena, N. et al. USP9X mediates an acute adaptive response to MAPK suppression in pancreatic cancer but creates multiple actionable therapeutic vulnerabilities. Cell Rep. Med. 4, 101007 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Montero, J. et al. Destabilization of NOXA mRNA as a common resistance mechanism to targeted therapies. Nat. Commun. 10, 5157 (2019).

    PubMed  PubMed Central  Google Scholar 

  122. Li, C. et al. LKB1 loss rewires JNK-induced apoptotic protein dynamics through NUAKs and sensitizes KRAS-mutant NSCLC to combined KRASG12C + MCL-1 blockade. Preprint at bioRxiv https://doi.org/10.1101/2022.09.29.510137 (2022).

  123. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02079740 (2024).

  124. Liu, J. et al. Activity of combination trametinib/navitoclax in patients with RAS-mutated gynecologic (GYN) cancers in a phase 1/2 study (LBA 12). Gynecol. Oncol. 166, S67 (2022).

    Google Scholar 

  125. Nangia, V. et al. Exploiting MCL1 dependency with combination MEK + MCL1 inhibitors leads to induction of apoptosis and tumor regression in KRAS-mutant non-small cell lung cancer. Cancer Discov. 8, 1598–1613 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Hogdal, L. J. & Letai, A. BCL-2 inhibition: stemming the tide of myeloid malignancies. Cell Stem Cell 12, 269–270 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Puyol, M. et al. A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell 18, 63–73 (2010).

    CAS  PubMed  Google Scholar 

  128. Ruscetti, M. et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science 362, 1416–1422 (2018). This study shows that the combination of MEKi with CDK4 and CKD6 inhibitors is cytotoxic in immunocompetent models of lung cancer in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Willobee, B. A. et al. Combined blockade of MEK and CDK4/6 pathways induces senescence to improve survival in pancreatic ductal adenocarcinoma. Mol. Cancer Ther. 20, 1246–1256 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Knudsen, E. S. et al. Targeting dual signalling pathways in concert with immune checkpoints for the treatment of pancreatic cancer. Gut 70, 127–138 (2021).

    CAS  PubMed  Google Scholar 

  131. Ruscetti, M. et al. Senescence-induced vascular remodeling creates therapeutic vulnerabilities in pancreas cancer. Cell 181, 424–441.e21 (2020). This study highlights tumour type-specific effects of the combination of MEKi with CDK4 and CDK6 inhibitors in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ziemke, E. K. et al. Sensitivity of KRAS-mutant colorectal cancers to combination therapy that cotargets MEK and CDK4/6. Clin. Cancer Res. 22, 405–414 (2016).

    CAS  PubMed  Google Scholar 

  133. Lee, M. S. et al. Efficacy of the combination of MEK and CDK4/6 inhibitors in vitro and in vivo in KRAS mutant colorectal cancer models. Oncotarget 7, 39595–39608 (2016).

    PubMed  PubMed Central  Google Scholar 

  134. Sorokin, A. V. et al. Targeting RAS mutant colorectal cancer with dual inhibition of MEK and CDK4/6. Cancer Res. 82, 3335–3344 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03981614 (2024).

  136. Castellano, E. & Downward, J. Role of RAS in the regulation of PI3-kinase. Curr. Top. Microbiol. Immunol. 346, 143–169 (2010).

    CAS  PubMed  Google Scholar 

  137. Malone, C. F. et al. Defining key signaling nodes and therapeutic biomarkers in NF1-mutant cancers. Cancer Discov. 4, 1062–1073 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Britten, C. D. PI3K and MEK inhibitor combinations: examining the evidence in selected tumor types. Cancer Chemother. Pharmacol. 71, 1395–1409 (2013).

    CAS  PubMed  Google Scholar 

  139. Brown, W. S. et al. Overcoming adaptive resistance to KRAS and MEK inhibitors by co-targeting mTORC1/2 complexes in pancreatic cancer. Cell Rep. Med. 1, 100131 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05840510 (2024).

  141. Hagiwara, A. et al. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab. 15, 725–738 (2012).

    CAS  PubMed  Google Scholar 

  142. Schreiber, K. H. et al. A novel rapamycin analog is highly selective for mTORC1 in vivo. Nat. Commun. 10, 3194 (2019).

    PubMed  PubMed Central  Google Scholar 

  143. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04774952 (2024).

  144. Truitt, M. L. et al. Differential requirements for eIF4E dose in normal development and cancer. Cell 162, 59–71 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Nardi, F. et al. Cotargeting a MYC/eIF4A-survival axis improves the efficacy of KRAS inhibitors in lung cancer. J. Clin. Invest. 133, e167651 (2023). This study shows that eIF4A inhibitors substantially improve the effects of KRAS inhibitors in NSCLC by suppressing the translation of multiple BCL-2 family members and further demonstrates that MYC overexpression creates this dependency and that MYC amplification or overexpression can be used as a biomarker.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Rosen, E. et al. Phase 1/2 dose expansion study evaluating first-in-class eIF4A inhibitor zotatifin in patients with ER+ metastatic breast cancer. J. Clin. Oncol. 41, 1080–1080 (2023).

    Google Scholar 

  147. Dhanasekaran, R. et al. The MYC oncogene—the grand orchestrator of cancer growth and immune evasion. Nat. Rev. Clin. Oncol. 19, 23–36 (2022).

    CAS  PubMed  Google Scholar 

  148. Sears, R., Leone, G., DeGregori, J. & Nevins, J. R. Ras enhances Myc protein stability. Mol. Cell 3, 169–179 (1999).

    CAS  PubMed  Google Scholar 

  149. Sears, R. et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes. Dev. 14, 2501–2514 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Soucek, L. et al. Modelling Myc inhibition as a cancer therapy. Nature 455, 679–683 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Kortlever, R. M. et al. Myc cooperates with Ras by programming inflammation and immune suppression. Cell 171, 1301–1315.e14 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Garralda, E. et al. MYC targeting by OMO-103 in solid tumors: a phase 1 trial. Nat. Med. https://doi.org/10.1038/s41591-024-02805-1 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Nishida, Y. et al. C-MYC targeting by degradation: novel dual c-Myc/GSPT1 degrader GT19715 induces TP53-independent cell death in acute myeloid leukemia and lymphomas. Blood 140, 483–484 (2022).

    Google Scholar 

  154. Madden, S. K., de Araujo, A. D., Gerhardt, M., Fairlie, D. P. & Mason, J. M. Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Mol. Cancer 20, 3 (2021).

    PubMed  PubMed Central  Google Scholar 

  155. Vaseva, A. V. et al. KRAS suppression-induced degradation of MYC Is antagonized by a MEK5–ERK5 compensatory mechanism. Cancer Cell 34, 807–822.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Blake, D. R. et al. Application of a MYC degradation screen identifies sensitivity to CDK9 inhibitors in KRAS-mutant pancreatic cancer. Sci. Signal. 12, eaav7259 (2019).

    PubMed  PubMed Central  Google Scholar 

  157. Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Sun, C. et al. Rational combination therapy with PARP and MEK inhibitors capitalizes on therapeutic liabilities in RAS mutant cancers. Sci. Transl. Med. 9, eaal5148 (2017).

    PubMed  PubMed Central  Google Scholar 

  159. Yang, B. et al. MEK inhibition remodels the immune landscape of mutant KRAS tumors to overcome resistance to PARP and immune checkpoint inhibitors. Cancer Res. 81, 2714–2729 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Maertens, O. et al. MAPK pathway suppression unmasks latent DNA repair defects and confers a chemical synthetic vulnerability in BRAF-, NRAS-, and NF1-mutant melanomas. Cancer Discov. 9, 526–545 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03162627 (2023).

  162. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05554328 (2024).

  163. Chan, W. Y., Brown, L. J., Reid, L. & Joshua, A. M. PARP inhibitors in melanoma — an expanding therapeutic option? Cancers 13, 4520 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Rodon Ahnert, J. et al. Avelumab or talazoparib in combination with binimetinib in metastatic pancreatic ductal adenocarcinoma: dose-finding results from phase Ib of the JAVELIN PARP MEKi trial. ESMO Open. 8, 101584 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Diehl, J. N. et al. The KRAS-regulated kinome identifies WEE1 and ERK coinhibition as a potential therapeutic strategy in KRAS-mutant pancreatic cancer. J. Biol. Chem. 297, 101335 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Klomp, J. E. et al. CHK1 protects oncogenic KRAS-expressing cells from DNA damage and is a target for pancreatic cancer treatment. Cell Rep. 37, 110060 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  168. Xiao, Y. et al. Emerging therapies in cancer metabolism. Cell Metab. 35, 1283–1303 (2023).

    CAS  PubMed  Google Scholar 

  169. Stine, Z. E., Schug, Z. T., Salvino, J. M. & Dang, C. V. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug. Discov. 21, 141–162 (2022).

    CAS  PubMed  Google Scholar 

  170. Mukhopadhyay, S., Vander Heiden, M. G. & McCormick, F. The metabolic landscape of RAS-driven cancers from biology to therapy. Nat. Cancer 2, 271–283 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Kimmelman, A. C. Metabolic dependencies in RAS-driven cancers. Clin. Cancer Res. 21, 1828–1834 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Heuer, T. S. et al. FASN inhibition and taxane treatment combine to enhance anti-tumor efficacy in diverse xenograft tumor models through disruption of tubulin palmitoylation and microtubule organization and FASN inhibition-mediated effects on oncogenic signaling and gene expression. EBioMedicine 16, 51–62 (2017).

    PubMed  Google Scholar 

  173. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03808558 (2023).

  174. Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Le, A. et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl Acad. Sci. USA 107, 2037–2042 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Ramirez, C., Hauser, A. D., Vucic, E. A. & Bar-Sagi, D. Plasma membrane V-ATPase controls oncogenic RAS-induced macropinocytosis. Nature 576, 477–481 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Yan, L. et al. Targeting glucose metabolism sensitizes pancreatic cancer to MEK inhibition. Cancer Res. 81, 4054–4065 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Xia, M., Li, X., Diao, Y., Du, B. & Li, Y. Targeted inhibition of glutamine metabolism enhances the antitumor effect of selumetinib in KRAS-mutant NSCLC. Transl. Oncol. 14, 100920 (2021).

    CAS  PubMed  Google Scholar 

  180. Encarnación-Rosado, J. et al. Targeting pancreatic cancer metabolic dependencies through glutamine antagonism. Nat. Cancer 5, 85–99 (2024).

    PubMed  Google Scholar 

  181. Lemberg, K. M., Gori, S. S., Tsukamoto, T., Rais, R. & Slusher, B. S. Clinical development of metabolic inhibitors for oncology. J. Clin. Invest. 132, e148550 (2022).

    PubMed  PubMed Central  Google Scholar 

  182. Lim, J. K. M. & Leprivier, G. The impact of oncogenic RAS on redox balance and implications for cancer development. Cell Death Dis. 10, 955 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Redding, A., Aplin, A. E. & Grabocka, E. RAS-mediated tumor stress adaptation and the targeting opportunities it presents. Dis. Model. Mech. 15, dmm049280 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. DeNicola, G. M. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106–109 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Badgley, M. A. et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368, 85–89 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Cullis, J., Das, S. & Bar-Sagi, D. Kras and tumor immunity: friend or foe? Cold Spring Harb. Perspect. Med. 8, a031849 (2018).

    PubMed  PubMed Central  Google Scholar 

  187. Skoulidis, F. et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 8, 822–835 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Overman, M. J. et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 18, 1182–1191 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Brahmer, J. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373, 123–135 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Royal, R. E. et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J. Immunother. Hagerstown Md. 1997 33, 828–833 (2010).

    CAS  Google Scholar 

  192. Coelho, M. A. et al. Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity 47, 1083–1099.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Zhang, Y. et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut 66, 124–136 (2017).

    CAS  PubMed  Google Scholar 

  194. Briere, D. M. et al. The KRASG12C nhibitor MRTX849 reconditions the tumor immune microenvironment and sensitizes tumors to checkpoint inhibitor therapy. Mol. Cancer Ther. 20, 975–985 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Tang, K. H. et al. Combined inhibition of SHP2 and CXCR1/2 promotes antitumor T-cell response in NSCLC. Cancer Discov. 12, 47–61 (2022).

    CAS  PubMed  Google Scholar 

  196. van Maldegem, F. et al. Characterisation of tumour microenvironment remodelling following oncogene inhibition in preclinical studies with imaging mass cytometry. Nat. Commun. 12, 5906 (2021).

    PubMed  PubMed Central  Google Scholar 

  197. Poon, E. et al. The MEK inhibitor selumetinib complements CTLA-4 blockade by reprogramming the tumor immune microenvironment. J. Immunother. Cancer 5, 63 (2017).

    PubMed  PubMed Central  Google Scholar 

  198. Kemp, S. B. et al. Efficacy of a small-molecule inhibitor of KrasG12D in immunocompetent models of pancreatic cancer. Cancer Discov. 13, 298–311 (2023). This study shows that the anti-tumoural activity of the KRAS-G12D inhibitor MRTX1133 is, in part, mediated by the adaptive immune system.

    CAS  PubMed  Google Scholar 

  199. Mahadevan, K. K. et al. KRASG12D inhibition reprograms the microenvironment of early and advanced pancreatic cancer to promote FAS-mediated killing by CD8+ T cells. Cancer Cell 41, 1606–1620.e8 (2023).

    CAS  PubMed  Google Scholar 

  200. Ebert, P. J. R. et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 44, 609–621 (2016).

    CAS  PubMed  Google Scholar 

  201. Garassino, M. C. et al. LBA65 KRYSTAL-7: efficacy and safety of adagrasib with pembrolizumab in patients with treatment-naïve, advanced non-small cell lung cancer (NSCLC) harboring a KRASG12C mutation. Ann. Oncol. 34, S1309–S1310 (2023).

    Google Scholar 

  202. Hu, H. et al. Oncogenic KRAS signaling drives evasion of innate immune surveillance in lung adenocarcinoma by activating CD47. J. Clin. Invest 133, e153470 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Bouwstra, R., van Meerten, T. & Bremer, E. CD47-SIRPα blocking-based immunotherapy: current and prospective therapeutic strategies. Clin. Transl. Med. 12, e943 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Zhang, Z. et al. A covalent inhibitor of K-RasG12C induces MHC class I presentation of haptenated peptide neoepitopes targetable by immunotherapy. Cancer Cell 40, 1060–1069.e7 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Hattori, T. et al. Creating MHC-restricted neoantigens with covalent inhibitors that can be targeted by immune therapy. Cancer Discov. 13, 132–145 (2023).

    CAS  PubMed  Google Scholar 

  206. Bear, A. S. et al. Biochemical and functional characterization of mutant KRAS epitopes validates this oncoprotein for immunological targeting. Nat. Commun. 12, 4365 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Tran, E. et al. T-cell transfer therapy targeting mutant KRAS in cancer. N. Engl. J. Med. 375, 2255–2262 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Boumelha, J. et al. An immunogenic model of KRAS-mutant lung cancer enables evaluation of targeted therapy and immunotherapy combinations. Cancer Res. 82, 3435–3448 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Shen, H. & Laird, P. W. Interplay between the cancer genome and epigenome. Cell 153, 38–55 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. You, J. S. & Jones, P. A. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22, 9–20 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Flavahan, W. A., Gaskell, E. & Bernstein, B. E. Epigenetic plasticity and the hallmarks of cancer. Science 357, eaal2380 (2017).

    PubMed  PubMed Central  Google Scholar 

  212. Garraway, L. A. & Lander, E. S. Lessons from the cancer genome. Cell 153, 17–37 (2013).

    CAS  PubMed  Google Scholar 

  213. Dawson, M. A. & Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012).

    CAS  PubMed  Google Scholar 

  214. Plass, C. et al. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat. Rev. Genet. 14, 765–780 (2013).

    CAS  PubMed  Google Scholar 

  215. Eichner, L. J. et al. HDAC3 is critical in tumor development and therapeutic resistance in Kras-mutant non-small cell lung cancer. Sci. Adv. 9, eadd3243 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Malone, C. F. et al. mTOR and HDAC inhibitors converge on the TXNIP/thioredoxin pathway to cause catastrophic oxidative stress and regression of RAS-driven tumors. Cancer Discov. 7, 1450–1463 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Wang, L. et al. An acquired vulnerability of drug-resistant melanoma with therapeutic potential. Cell 173, 1413–1425.e14 (2018).

    CAS  PubMed  Google Scholar 

  218. Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Singleton, K. R. et al. Melanoma therapeutic strategies that select against resistance by exploiting MYC-driven evolutionary convergence. Cell Rep. 21, 2796–2812 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. De Raedt, T. et al. PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature 514, 247–251 (2014).

    PubMed  Google Scholar 

  221. Guerra, S. L. et al. A deregulated HOX gene axis confers an epigenetic vulnerability in KRAS-mutant lung cancers. Cancer Cell 37, 705–719.e6 (2020). This study is a relevant example of a therapeutic strategy co-targeting epigenetic and oncogenic pathways, in which the combination of MEK and BET inhibitors induces stalled DNA replication and DNA damage to cause cell death.

    CAS  PubMed  PubMed Central  Google Scholar 

  222. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05253131 (2024).

  223. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05111561 (2023).

  224. Andricovich, J. et al. Loss of KDM6A activates super-enhancers to induce gender-specific squamous-like pancreatic cancer and confers sensitivity to BET inhibitors. Cancer Cell 33, 512–526.e8 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Plana, D., Palmer, A. C. & Sorger, P. K. Independent drug action in combination therapy: implications for precision oncology. Cancer Discov. 12, 606–624 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Hwangbo, H., Patterson, S. C., Dai, A., Plana, D. & Palmer, A. C. Additivity predicts the efficacy of most approved combination therapies for advanced cancer. Nat. Cancer 4, 1693–1704 (2023).

    CAS  PubMed  Google Scholar 

  227. Misale, S. et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486, 532–536 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Diaz, L. A. Jr et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05074810 (2024).

  230. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05358249 (2024).

  231. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04959981 (2023).

  232. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03087071 (2023).

  233. Reissig, T. M. et al. Lasting response by vertical inhibition with cetuximab and trametinib in KRAS-mutated colorectal cancer patient-derived xenografts. Mol. Oncol. 17, 2396–2414 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01927341 (2021).

  235. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01287130 (2019).

  236. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04793958 (2024).

  237. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05002270 (2023).

  238. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05194995 (2023).

  239. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04956640 (2024).

  240. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04449874 (2024).

  241. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04330664 (2024).

  242. Ho, C. S. L. et al. HER2 mediates clinical resistance to the KRASG12C inhibitor sotorasib, which is overcome by co-targeting SHP2. Eur. J. Cancer Oxf. Engl. 1990 159, 16–23 (2021).

    CAS  Google Scholar 

  243. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05054725 (2023).

  244. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04699188 (2024).

  245. Frank, K. J. et al. Extensive preclinical validation of combined RMC-4550 and LY3214996 supports clinical investigation for KRAS mutant pancreatic cancer. Cell Rep. Med. 3, 100815 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04973163 (2023).

  247. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03825289 (2024).

  248. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04132505 (2023).

  249. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04735068 (2023).

  250. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04386057 (2024).

  251. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04145297 (2024).

  252. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05691504 (2024).

  253. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02065063 (2018).

  254. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03170206 (2023).

  255. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02022982 (2024).

  256. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05178888 (2022).

  257. Lou, K. et al. KRASG12C inhibition produces a driver-limited state revealing collateral dependencies. Sci. Signal. 12, eaaw9450 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04185883 (2024).

  259. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05039177 (2024).

  260. Goodwin, C. M. et al. Combination therapies with CDK4/6 inhibitors to treat KRAS-mutant pancreatic cancer. Cancer Res. 83, 141–157 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03454035 (2024).

  262. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03299088 (2023).

  263. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03225664 (2024).

  264. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02900664 (2024).

  265. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03833427 (2024).

  266. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03991819 (2023).

  267. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03374254 (2023).

  268. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03475004 (2024).

  269. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04348045 (2024).

  270. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03600701 (2023).

  271. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03337698 (2024).

  272. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04613596 (2024).

  273. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05340621 (2023).

Download references

Acknowledgements

This work was supported by R01CA111754 and the Ludwig Center at Harvard (K.C.). L.S. was supported by a Landry Cancer Biology Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content and wrote the article. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Karen Cichowski.

Ethics declarations

Competing interests

K.C. is an adviser at Genentech and serves on the scientific advisory board of Erasca, Inc. N.P. and L.S. declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Julian Downward, Rene Bernards and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adaptive responses

Cell-intrinsic protective mechanisms that are triggered in response to a given drug exposure and allow tumour cells to survive.

Allele-specific inhibitors

A class of inhibitors that selectively target specific mutant alleles of KRAS, NRAS or HRAS oncoproteins and do not have activity against wild-type isoforms.

Anchor agent

In the context of this Review, an agent that suppresses a core component of the RAS pathway and is co-administered with a second drug against a different target as part of a combination therapy.

Class I HDAC inhibitors

Drugs that target class I histone deacetylases (HDAC1, HDAC2, HDAC3, HDAC8), enzymes that are located in the nucleus and remove acetyl groups from the chromatin.

Converging oncogenic targets

Gene products that function downstream of multiple oncogenic pathways and whose inhibition may allow simultaneous suppression of several oncogenic processes.

Cytostasis

A lack of change over time in the number of tumour cells, which can reflect a balance between cell proliferation and cell death.

Degraders

A class of small molecule inhibitors that bring a target into close proximity with an E3 ubiquitin ligase to promote polyubiquitination and subsequent proteasomal degradation of the target.

Ferritinophagy

A selective form of autophagy that involves the degradation of ferritin and subsequent mobilization of iron.

Hydroxychloroquine

(HCQ). A drug that inhibits the recycling of cellular components through autophagy by preventing lysosomal acidification and hindering autophagosome–lysosome fusion.

Macropinocytosis

A form of endocytosis in which the plasma membrane non-selectively engulfs extracellular fluid to internalize and degrade macromolecules.

Metabolic stress

A state of stress in which cellular bioenergetic and biosynthetic demands impact metabolic homeostasis and result in the underproduction or overproduction of critical metabolites.

Mitotic stress

A state of stress in which dysregulated mitosis leads to the mis-segregation of chromosomes during uncontrolled cell division.

Molecular glues

A class of small molecules that induce or stabilize the interaction between two given proteins.

Noonan-like syndrome

A disorder caused by germ-line mutations in SHOC2 that is characterized by phenotypes similar to those observed in the RASopathy Noonan syndrome that include loose anagen hair, hyperpigmentation, and craniofacial and cardiac anomalies.

On-target mechanisms of resistance

Resistance that occurs through mutations in genes or pathways directly targeted by a drug.

Oxidative stress

An imbalance between the production of reactive chemical species and the antioxidant response that promotes various signalling pathways but can lead to intracellular damage.

Proteotoxic stress

An imbalance of protein levels that can result from dysregulated protein translation, protein folding or protein degradation and apply strain on the unfolded protein response or proteasomal degradation pathway.

RASopathy

A group of medical syndromes characterized by germ-line mutations in genes of the RAS pathway that lead to deregulated pathway activity.

Replication stress

A state of genomic dysregulation in which triggers such as DNA damage lead to the stalling of replication forks during DNA replication.

Synthetic lethality

An interaction between two genes wherein perturbation of each single gene is not lethal on its own whereas concurrent perturbations of both genes induce cell death.

Therapeutic window

The range of drug concentrations in which the therapeutic effect is achieved with minimal toxicity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perurena, N., Situ, L. & Cichowski, K. Combinatorial strategies to target RAS-driven cancers. Nat Rev Cancer 24, 316–337 (2024). https://doi.org/10.1038/s41568-024-00679-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-024-00679-6

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer