Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunogenic cell death in cancer: targeting necroptosis to induce antitumour immunity

Abstract

Most metastatic cancers remain incurable due to the emergence of apoptosis-resistant clones, fuelled by intratumour heterogeneity and tumour evolution. To improve treatment, therapies should not only kill cancer cells but also activate the immune system against the tumour to eliminate any residual cancer cells that survive treatment. While current cancer therapies rely heavily on apoptosis — a largely immunologically silent form of cell death — there is growing interest in harnessing immunogenic forms of cell death such as necroptosis. Unlike apoptosis, necroptosis generates second messengers that act on immune cells in the tumour microenvironment, alerting them of danger. This lytic form of cell death optimizes the provision of antigens and adjuvanticity for immune cells, potentially boosting anticancer treatment approaches by combining cellular suicide and immune response approaches. In this Review, we discuss the mechanisms of necroptosis and how it activates antigen-presenting cells, drives cross-priming of CD8+ T cells and induces antitumour immune responses. We also examine the opportunities and potential drawbacks of such strategies for exposing cancer cells to immunological attacks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Extrinsic and intrinsic pathways to cell death.
Fig. 2: Necroptotic signalling.
Fig. 3: Apoptotic and necroptotic cells have differential effects on DC maturation and immune responses.

Similar content being viewed by others

References

  1. Letai, A. Cell death and cancer therapy: don’t forget to kill the cancer cell! Clin. Cancer Res. 21, 5015–5020 (2015).

    CAS  PubMed  Google Scholar 

  2. Roberts, A. W. et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 374, 311–322 (2016).

    CAS  PubMed  Google Scholar 

  3. Marin-Acevedo, J. A., Soyano, A. E., Dholaria, B., Knutson, K. L. & Lou, Y. Cancer immunotherapy beyond immune checkpoint inhibitors. J. Hematol. Oncol. 11, 8 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. Vasan, N., Baselga, J. & Hyman, D. M. A view on drug resistance in cancer. Nature 575, 299–309 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cabanos, H. F. & Hata, A. N. Emerging insights into targeted therapy-tolerant persister cells in cancer. Cancers 13, 2666 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pfeffer, C. M. & Singh, A. T. K. Apoptosis: a target for anticancer therapy. Int. J. Mol. Sci. 19, 448 (2018).

    PubMed  PubMed Central  Google Scholar 

  8. Legrand, A. J., Konstantinou, M., Goode, E. F. & Meier, P. The diversification of cell death and immunity: memento mori. Mol. Cell 76, 232–242 (2019).

    CAS  PubMed  Google Scholar 

  9. Fadok, V. A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J. Clin. Invest. 101, 890–898 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Voll, R. E. et al. Immunosuppressive effects of apoptotic cells. Nature 390, 350–351 (1997).

    CAS  PubMed  Google Scholar 

  11. Vitale, I. et al. Apoptotic cell death in disease — current understanding of the NCCD 2023. Cell Death Differ. 30, 1097–1154 (2023).

    PubMed  PubMed Central  Google Scholar 

  12. Segawa, K. & Nagata, S. An apoptotic ‘eat me’ signal: phosphatidylserine exposure. Trends Cell Biol. 25, 639–650 (2015).

    CAS  PubMed  Google Scholar 

  13. Scaffidi, C., Schmitz, I., Krammer, P. H. & Peter, M. E. The role of c-FLIP in modulation of CD95-induced apoptosis. J. Biol. Chem. 274, 1541 (1999).

    CAS  PubMed  Google Scholar 

  14. Pasparakis, M. & Vandenabeele, P. Necroptosis and its role in inflammation. Nature 517, 311–320 (2015).

    CAS  PubMed  Google Scholar 

  15. Fulda, S. Therapeutic exploitation of necroptosis for cancer therapy. Semin. Cell Dev. Biol. 35, 51–56 (2014).

    CAS  PubMed  Google Scholar 

  16. Su, Z., Yang, Z., Xu, Y., Chen, Y. & Yu, Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol. Cancer 14, 48 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. Nicolai, S., Pieraccioli, M., Peschiaroli, A., Melino, G. & Raschella, G. Neuroblastoma: oncogenic mechanisms and therapeutic exploitation of necroptosis. Cell Death Dis. 6, e2010 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Moriwaki, K. & Chan, F. K. Regulation of RIPK3- and RHIM-dependent necroptosis by the proteasome. J. Biol. Chem. 291, 5948–5959 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaczmarek, A., Vandenabeele, P. & Krysko, D. V. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38, 209–223 (2013).

    CAS  PubMed  Google Scholar 

  20. Brault, M., Olsen, T. M., Martinez, J., Stetson, D. B. & Oberst, A. Intracellular nucleic acid sensing triggers necroptosis through synergistic type I IFN and TNF signaling. J. Immunol. 200, 2748–2756 (2018).

    CAS  PubMed  Google Scholar 

  21. Hildebrand, J. M. et al. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc. Natl Acad. Sci. USA 111, 15072–15077 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, X. et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res. 24, 105–121 (2014).

    CAS  PubMed  Google Scholar 

  23. Cai, Z. et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat. Cell Biol. 16, 55–65 (2014).

    CAS  PubMed  Google Scholar 

  24. Murphy, J. M. et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39, 443–453 (2013).

    CAS  PubMed  Google Scholar 

  25. Meng, Y. et al. Human RIPK3 C-lobe phosphorylation is essential for necroptotic signaling. Cell Death Dis. 13, 565 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Vanden Berghe, T., Hassannia, B. & Vandenabeele, P. An outline of necrosome triggers. Cell. Mol. Life Sci. 73, 2137–2152 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Vercammen, D. et al. Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J. Exp. Med. 188, 919–930 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Vercammen, D. et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med. 187, 1477–1485 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489–495 (2000). In this seminal paper, the first identification of RIPK1 as an essential mediator of necroptosis is provided.

    CAS  PubMed  Google Scholar 

  30. Ermolaeva, M. A. et al. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat. Immunol. 9, 1037–1046 (2008).

    CAS  PubMed  Google Scholar 

  31. Pobezinskaya, Y. L. et al. The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF-dependent Toll-like receptors. Nat. Immunol. 9, 1047–1054 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003). The groundbreaking first description of the TNFR1 complex I and complex II.

    CAS  PubMed  Google Scholar 

  33. Hsu, H., Xiong, J. & Goeddel, D. V. The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation. Cell 81, 495–504 (1995).

    CAS  PubMed  Google Scholar 

  34. Rothe, M. et al. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83, 1243–1252 (1995).

    CAS  PubMed  Google Scholar 

  35. Shu, H. B., Takeuchi, M. & Goeddel, D. V. The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex. Proc. Natl Acad. Sci. USA 93, 13973–13978 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Varfolomeev, E. et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor α (TNFα)-induced NF-κB activation. J. Biol. Chem. 283, 24295–24299 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lafont, E. et al. TBK1 and IKKepsilon prevent TNF-induced cell death by RIPK1 phosphorylation. Nat. Cell Biol. 20, 1389–1399 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu, D. et al. TBK1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging. Cell 174, 1477–1491.e19 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Haas, K. F., Miller, S. L., Friedman, D. B. & Broadie, K. The ubiquitin-proteasome system postsynaptically regulates glutamatergic synaptic function. Mol. Cell. Neurosci. 35, 64–75 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jaco, I. et al. MK2 phosphorylates RIPK1 to prevent TNF-induced cell death. Mol. Cell 66, 698–710.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dondelinger, Y. et al. MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death. Nat. Cell Biol. 19, 1237–1247 (2017).

    CAS  PubMed  Google Scholar 

  42. Menon, M. B. et al. p38MAPK/MK2-dependent phosphorylation controls cytotoxic RIPK1 signalling in inflammation and infection. Nat. Cell Biol. 19, 1248–1259 (2017).

    CAS  PubMed  Google Scholar 

  43. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    CAS  PubMed  Google Scholar 

  44. Dynek, J. N. et al. c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J. 29, 4198–4209 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bertrand, M. J. et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689–700 (2008).

    CAS  PubMed  Google Scholar 

  46. Ea, C. K., Deng, L., Xia, Z. P., Pineda, G. & Chen, Z. J. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257 (2006).

    CAS  PubMed  Google Scholar 

  47. Dillon, C. P. & Green, D. R. Molecular cell biology of apoptosis and necroptosis in cancer. Adv. Exp. Med. Biol. 930, 1–23 (2016).

    CAS  PubMed  Google Scholar 

  48. Petrie, E. J., Hildebrand, J. M. & Murphy, J. M. Insane in the membrane: a structural perspective of MLKL function in necroptosis. Immunol. Cell Biol. 95, 152–159 (2017).

    CAS  PubMed  Google Scholar 

  49. Moquin, D. M., McQuade, T. & Chan, F. K. CYLD deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate kinase activation and programmed necrosis. PLoS ONE 8, e76841 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Vince, J. E. & Silke, J. The intersection of cell death and inflammasome activation. Cell. Mol. Life Sci. 73, 2349–2367 (2016).

    CAS  PubMed  Google Scholar 

  51. Kaiser, W. J. et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471, 368–372 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Oberst, A. et al. Catalytic activity of the caspase-8-FLIPL complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Brumatti, G. et al. The caspase-8 inhibitor emricasan combines with the SMAC mimetic birinapant to induce necroptosis and treat acute myeloid leukemia. Sci. Transl Med. 8, 339ra369 (2016).

    Google Scholar 

  54. McComb, S. et al. Activation of concurrent apoptosis and necroptosis by SMAC mimetics for the treatment of refractory and relapsed ALL. Sci. Transl Med. 8, 339ra370 (2016).

    Google Scholar 

  55. Feoktistova, M. et al. cIAPs block ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43, 449–463 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Thapa, R. J. et al. DAI senses influenza a virus genomic RNA and activates RIPK3-dependent cell death. Cell Host Microbe 20, 674–681 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiao, H. et al. ADAR1 averts fatal type I interferon induction by ZBP1. Nature 607, 776–783 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Jiao, H. et al. Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature 580, 391–395 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Maelfait, J. et al. Sensing of viral and endogenous RNA by ZBP1/DAI induces necroptosis. EMBO J. 36, 2529–2543 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Upton, J. W., Kaiser, W. J. & Mocarski, E. S. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11, 290–297 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Newton, K. et al. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature 540, 129–133 (2016).

    CAS  PubMed  Google Scholar 

  62. Lin, J. et al. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature 540, 124–128 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kaiser, W. J. et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J. Biol. Chem. 288, 31268–31279 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Rickard, J. A. et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157, 1175–1188 (2014).

    CAS  PubMed  Google Scholar 

  65. Dillon, C. P. et al. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157, 1189–1202 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Devos, M. et al. Sensing of endogenous nucleic acids by ZBP1 induces keratinocyte necroptosis and skin inflammation. J. Exp. Med. 217, e20191913 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Li, J. et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150, 339–350 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Declercq, W., Vanden Berghe, T. & Vandenabeele, P. RIP kinases at the crossroads of cell death and survival. Cell 138, 229–232 (2009).

    CAS  PubMed  Google Scholar 

  69. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012). First report of MLKL as the most downstream crucial effector of TNF-induced necroptosis.

    CAS  PubMed  Google Scholar 

  70. Rodriguez, D. A. et al. Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis. Cell Death Differ. 23, 76–88 (2016).

    CAS  PubMed  Google Scholar 

  71. Tanzer, M. C. et al. Necroptosis signalling is tuned by phosphorylation of MLKL residues outside the pseudokinase domain activation loop. Biochem. J. 471, 255–265 (2015).

    CAS  PubMed  Google Scholar 

  72. Garnish, S. E. et al. Conformational interconversion of MLKL and disengagement from RIPK3 precede cell death by necroptosis. Nat. Commun. 12, 2211 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Dondelinger, Y. et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 7, 971–981 (2014).

    CAS  PubMed  Google Scholar 

  74. Wang, H. et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133–146 (2014).

    CAS  PubMed  Google Scholar 

  75. Hildebrand, J. M. et al. A missense mutation in the MLKL brace region promotes lethal neonatal inflammation and hematopoietic dysfunction. Nat. Commun. 11, 3150 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen, D., Yu, J. & Zhang, L. Necroptosis: an alternative cell death program defending against cancer. Biochim. Biophys. Acta 1865, 228–236 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018).

    PubMed  PubMed Central  Google Scholar 

  78. Samson, A. L. et al. MLKL trafficking and accumulation at the plasma membrane control the kinetics and threshold for necroptosis. Nat. Commun. 11, 3151 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Petrie, E. J. et al. Identification of MLKL membrane translocation as a checkpoint in necroptotic cell death using Monobodies. Proc. Natl Acad. Sci. USA 117, 8468–8475 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Garcia, L. R. et al. Ubiquitylation of MLKL at lysine 219 positively regulates necroptosis-induced tissue injury and pathogen clearance. Nat. Commun. 12, 3364 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yoon, S., Kovalenko, A., Bogdanov, K. & Wallach, D. MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation. Immunity 47, 51–65.e7 (2017).

    CAS  PubMed  Google Scholar 

  82. Gong, Y. N. et al. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 169, 286–300.e16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Fan, W. et al. Flotillin-mediated endocytosis and ALIX-syntenin-1-mediated exocytosis protect the cell membrane from damage caused by necroptosis. Sci. Signal. 12, eaaw3423 (2019).

    CAS  PubMed  Google Scholar 

  84. Liu, Z. et al. Oligomerization-driven MLKL ubiquitylation antagonizes necroptosis. EMBO J. 40, e103718 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Yatim, N., Cullen, S. & Albert, M. L. Dying cells actively regulate adaptive immune responses. Nat. Rev. Immunol. 17, 262–275 (2017).

    CAS  PubMed  Google Scholar 

  86. Medina, C. B. & Ravichandran, K. S. Do not let death do us part: ‘find-me’ signals in communication between dying cells and the phagocytes. Cell Death Differ. 23, 979–989 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Enari, M. et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50 (1998).

    CAS  PubMed  Google Scholar 

  88. Sakahira, H., Enari, M. & Nagata, S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96–99 (1998).

    CAS  PubMed  Google Scholar 

  89. Yoshida, H., Okabe, Y., Kawane, K., Fukuyama, H. & Nagata, S. Lethal anemia caused by interferon-β produced in mouse embryos carrying undigested DNA. Nat. Immunol. 6, 49–56 (2005).

    CAS  PubMed  Google Scholar 

  90. Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. McArthur, K. & Kile, B. T. Apoptotic caspases: multiple or mistaken identities. Trends Cell Biol. 28, 475–493 (2018).

    CAS  PubMed  Google Scholar 

  93. McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, eaao6047 (2018).

    PubMed  Google Scholar 

  94. Giampazolias, E. et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat. Cell Biol. 19, 1116–1129 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ahmed, A. & Tait, S. W. G. Targeting immunogenic cell death in cancer. Mol. Oncol. 14, 2994–3006 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Vandenabeele, P., Vandecasteele, K., Bachert, C., Krysko, O. & Krysko, D. V. Immunogenic apoptotic cell death and anticancer immunity. Adv. Exp. Med. Biol. 930, 133–149 (2016).

    CAS  PubMed  Google Scholar 

  97. Xie, D., Wang, Q. & Wu, G. Research progress in inducing immunogenic cell death of tumor cells. Front. Immunol. 13, 1017400 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Morioka, S., Maueröder, C. & Ravichandran, K. S. Living on the edge: efferocytosis at the interface of homeostasis and pathology. Immunity 50, 1149–1162 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Snyder, A. G. et al. Intratumoral activation of the necroptotic pathway components RIPK1 and RIPK3 potentiates antitumor immunity. Sci. Immunol. 4, eaaw2004 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Yatim, N. et al. RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8+ T cells. Science 350, 328–334 (2015). This paper demonstrates that dying cells are enabled to stimulate adaptive immunity by RIPK1-induced cell death and RIPK1-mediated activation of NF-κB (inflammatory signalling).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Aaes, T. L. et al. Vaccination with necroptotic cancer cells induces efficient anti-tumor immunity. Cell Rep. 15, 274–287 (2016).

    CAS  PubMed  Google Scholar 

  102. Orozco, S. L. et al. RIPK3 activation leads to cytokine synthesis that continues after loss of cell membrane integrity. Cell Rep. 28, 2275–2287.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Workenhe, S. T. et al. De novo necroptosis creates an inflammatory environment mediating tumor susceptibility to immune checkpoint inhibitors. Commun. Biol. 3, 645 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Martin, S. J. Cell death and inflammation: the case for IL-1 family cytokines as the canonical DAMPs of the immune system. FEBS J. 283, 2599–2615 (2016).

    CAS  PubMed  Google Scholar 

  105. Blum, J. S., Wearsch, P. A. & Cresswell, P. Pathways of antigen processing. Annu. Rev. Immunol. 31, 443–473 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Fadok, V. A., Bratton, D. L. & Henson, P. M. Phagocyte receptors for apoptotic cells: recognition, uptake, and consequences. J. Clin. Invest. 108, 957–962 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kim, S., Elkon, K. B. & Ma, X. Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells. Immunity 21, 643–653 (2004).

    CAS  PubMed  Google Scholar 

  108. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    CAS  PubMed  Google Scholar 

  109. Land, W. et al. The beneficial effect of human recombinant superoxide dismutase on acute and chronic rejection events in recipients of cadaveric renal transplants. Transplantation 57, 211–217 (1994). This study, together with Matzinger (2002), coined the ‘danger theory’ for the first time, which states that the immune system can distinguish between dangerous and innocuous endogenous signals.

    CAS  PubMed  Google Scholar 

  110. Land, W. G. & Messmer, K. The danger theory in view of the injury hypothesis: 20 years later. Front. Immunol. 3, 349 (2012).

    PubMed  PubMed Central  Google Scholar 

  111. Tang, D., Kang, R., Coyne, C. B., Zeh, H. J. & Lotze, M. T. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol. Rev. 249, 158–175 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Alvarez-Diaz, S. et al. The pseudokinase MLKL and the kinase RIPK3 have distinct roles in autoimmune disease caused by loss of death-receptor-induced apoptosis. Immunity 45, 513–526 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Hardy, M. P., Mc, G. A. F. & O’Neill, L. A. Transcriptional regulation of the human TRIF (TIR domain-containing adaptor protein inducing interferon beta) gene. Biochem. J. 380, 83–93 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Liu, S. Y., Sanchez, D. J., Aliyari, R., Lu, S. & Cheng, G. Systematic identification of type I and type II interferon-induced antiviral factors. Proc. Natl Acad. Sci. USA 109, 4239–4244 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Aaes, T. L. et al. Immunodominant AH1 antigen-deficient necroptotic, but not apoptotic, murine cancer cells induce antitumor protection. J. Immunol. 204, 775–787 (2020).

    CAS  PubMed  Google Scholar 

  117. Tait, S. W. et al. Resistance to caspase-independent cell death requires persistence of intact mitochondria. Dev. Cell 18, 802–813 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Vringer, E. & Tait, S. W. G. Mitochondria and inflammation: cell death heats up. Front. Cell Dev. Biol. 7, 100 (2019).

    PubMed  PubMed Central  Google Scholar 

  119. Giampazolias, E. & Tait, S. W. G. Caspase-independent cell death: an anti-cancer double whammy. Cell Cycle 17, 269–270 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Garcia-Tsao, G. et al. Randomized placebo-controlled trial of emricasan for non-alcoholic steatohepatitis-related cirrhosis with severe portal hypertension. J. Hepatol. 72, 885–895 (2020).

    CAS  PubMed  Google Scholar 

  121. Hoglen, N. C. et al. Characterization of IDN-6556 (3-[2-(2-tert-butyl-phenylaminooxalyl)-amino]-propionylamino]-4-oxo-5-(2,3,5,6-tetrafluoro-phenoxy)-pentanoic acid): a liver-targeted caspase inhibitor. J. Pharmacol. Exp. Ther. 309, 634–640 (2004).

    CAS  PubMed  Google Scholar 

  122. Vaux, D. L. & Silke, J. Mammalian mitochondrial IAP binding proteins. Biochem. Biophys. Res. Commun. 304, 499–504 (2003).

    CAS  PubMed  Google Scholar 

  123. Silke, J. & Meier, P. Inhibitor of apoptosis (IAP) proteins-modulators of cell death and inflammation. Cold Spring Harb. Perspect. Biol. 5, a008730 (2013).

    PubMed  PubMed Central  Google Scholar 

  124. Vince, J. E. et al. IAP antagonists target cIAP1 to induce TNFα-dependent apoptosis. Cell 131, 682–693 (2007).

    CAS  PubMed  Google Scholar 

  125. Feltham, R. et al. Smac mimetics activate the E3 ligase activity of cIAP1 protein by promoting RING domain dimerization. J. Biol. Chem. 286, 17015–17028 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Dueber, E. C. et al. Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination. Science 334, 376–380 (2011).

    CAS  PubMed  Google Scholar 

  127. Morrish, E., Brumatti, G. & Silke, J. Future therapeutic directions for smac-mimetics. Cells 9, 406 (2020). A comprehensive overview of the development and use of SMAC mimetics for the treatment of cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Vanlangenakker, N. et al. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ. 18, 656–665 (2011).

    CAS  PubMed  Google Scholar 

  129. Hannes, S., Abhari, B. A. & Fulda, S. Smac mimetic triggers necroptosis in pancreatic carcinoma cells when caspase activation is blocked. Cancer Lett. 380, 31–38 (2016).

    CAS  PubMed  Google Scholar 

  130. Varfolomeev, E. et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-κB activation, and TNFα-dependent apoptosis. Cell 131, 669–681 (2007).

    CAS  PubMed  Google Scholar 

  131. Petersen, S. L. et al. Autocrine TNFα signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12, 445–456 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer 9, 361–371 (2009).

    CAS  PubMed  Google Scholar 

  133. Lienard, D., Ewalenko, P., Delmotte, J. J., Renard, N. & Lejeune, F. J. High-dose recombinant tumor necrosis factor alpha in combination with interferon gamma and melphalan in isolation perfusion of the limbs for melanoma and sarcoma. J. Clin. Oncol. 10, 52–60 (1992).

    CAS  PubMed  Google Scholar 

  134. Smith, H. G. et al. RIPK1-mediated immunogenic cell death promotes anti-tumour immunity against soft-tissue sarcoma. EMBO Mol. Med. 12, e10979 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Beug, S. T. et al. Smac mimetics and innate immune stimuli synergize to promote tumor death. Nat. Biotechnol. 32, 182–190 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Chesi, M. et al. IAP antagonists induce anti-tumor immunity in multiple myeloma. Nat. Med. 22, 1411–1420 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Michie, J. et al. Antagonism of IAPs enhances CAR T-cell efficacy. Cancer Immunol. Res. 7, 183–192 (2019).

    CAS  PubMed  Google Scholar 

  138. Thon, L., Mathieu, S., Kabelitz, D. & Adam, D. The murine TRAIL receptor signals caspase-independent cell death through ceramide. Exp. Cell Res. 312, 3808–3821 (2006).

    CAS  PubMed  Google Scholar 

  139. Voigt, S. et al. TRAIL-induced programmed necrosis as a novel approach to eliminate tumor cells. BMC Cancer 14, 74 (2014).

    PubMed  PubMed Central  Google Scholar 

  140. Jouan-Lanhouet, S. et al. TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ. 19, 2003–2014 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Liccardi, G. et al. RIPK1 and caspase-8 ensure chromosome stability independently of their role in cell death and inflammation. Mol. Cell 73, 413–428.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Tenev, T. et al. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol. Cell 43, 432–448 (2011).

    CAS  PubMed  Google Scholar 

  143. Rohde, K. et al. A Bak-dependent mitochondrial amplification step contributes to Smac mimetic/glucocorticoid-induced necroptosis. Cell Death Differ. 24, 83–97 (2017).

    CAS  PubMed  Google Scholar 

  144. Chromik, J., Safferthal, C., Serve, H. & Fulda, S. Smac mimetic primes apoptosis-resistant acute myeloid leukaemia cells for cytarabine-induced cell death by triggering necroptosis. Cancer Lett. 344, 101–109 (2014).

    CAS  PubMed  Google Scholar 

  145. Gerges, S., Rohde, K. & Fulda, S. Cotreatment with Smac mimetics and demethylating agents induces both apoptotic and necroptotic cell death pathways in acute lymphoblastic leukemia cells. Cancer Lett. 375, 127–132 (2016).

    CAS  PubMed  Google Scholar 

  146. Steinhart, L., Belz, K. & Fulda, S. Smac mimetic and demethylating agents synergistically trigger cell death in acute myeloid leukemia cells and overcome apoptosis resistance by inducing necroptosis. Cell Death Dis. 4, e802 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Steinwascher, S., Nugues, A. L., Schoeneberger, H. & Fulda, S. Identification of a novel synergistic induction of cell death by Smac mimetic and HDAC inhibitors in acute myeloid leukemia cells. Cancer Lett. 366, 32–43 (2015).

    CAS  PubMed  Google Scholar 

  148. He, G. W. et al. Regression of apoptosis-resistant colorectal tumors by induction of necroptosis in mice. J. Exp. Med. 214, 1655–1662 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Takemura, R. et al. PolyI:C-induced, TLR3/RIP3-dependent necroptosis backs up immune effector-mediated tumor elimination in vivo. Cancer Immunol. Res. 3, 902–914 (2015).

    CAS  PubMed  Google Scholar 

  150. Le Naour, J., Galluzzi, L., Zitvogel, L., Kroemer, G. & Vacchelli, E. Trial watch: TLR3 agonists in cancer therapy. Oncoimmunology 9, 1771143 (2020).

    PubMed  PubMed Central  Google Scholar 

  151. Zhang, T. et al. ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis. Nature 606, 594–602 (2022). This paper shows that the adenosine deaminase ADAR1 interferes with necroptosis and responsiveness to ICIs through binding to Z-RNAs and describes a novel strategy for exploiting Z-nucleic acids to improve responsiveness to ICIs.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Chen, R., Ishak, C. A. & De Carvalho, D. D. Endogenous retroelements and the viral mimicry response in cancer therapy and cellular homeostasis. Cancer Discov. 11, 2707–2725 (2021).

    CAS  PubMed  Google Scholar 

  153. Tummers, B. et al. Caspase-8-dependent inflammatory responses are controlled by its adaptor, FADD, and necroptosis. Immunity 52, 994–1006.e8 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Tao, P. et al. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1. Nature 577, 109–114 (2020).

    CAS  PubMed  Google Scholar 

  155. Schwarzer, R., Jiao, H., Wachsmuth, L., Tresch, A. & Pasparakis, M. FADD and caspase-8 regulate gut homeostasis and inflammation by controlling MLKL- and GSDMD-mediated death of intestinal epithelial cells. Immunity 52, 978–993.e6 (2020).

    CAS  PubMed  Google Scholar 

  156. Mifflin, L., Ofengeim, D. & Yuan, J. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nat. Rev. Drug Discov. 19, 553–571 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Laurien, L. et al. Autophosphorylation at serine 166 regulates RIP kinase 1-mediated cell death and inflammation. Nat. Commun. 11, 1747 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Lalaoui, N. et al. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature 577, 103–108 (2020).

    CAS  PubMed  Google Scholar 

  159. Priem, D. et al. A20 protects cells from TNF-induced apoptosis through linear ubiquitin-dependent and -independent mechanisms. Cell Death Dis. 10, 692 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Newton, K. et al. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature 574, 428–431 (2019).

    CAS  PubMed  Google Scholar 

  161. Kondylis, V. & Pasparakis, M. RIP kinases in liver cell death, inflammation and cancer. Trends Mol. Med. 25, 47–63 (2019).

    CAS  PubMed  Google Scholar 

  162. Cuchet-Lourenco, D. et al. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science 361, 810–813 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Vlantis, K. et al. NEMO prevents RIP kinase 1-mediated epithelial cell death and chronic intestinal inflammation by NF-κB-dependent and -independent functions. Immunity 44, 553–567 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Kaiser, W. J. et al. RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc. Natl Acad. Sci. USA 111, 7753–7758 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Dannappel, M. et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513, 90–104 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Takahashi, N. et al. RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513, 95–99 (2014).

    CAS  PubMed  Google Scholar 

  167. Cucolo, L. et al. The interferon-stimulated gene RIPK1 regulates cancer cell intrinsic and extrinsic resistance to immune checkpoint blockade. Immunity 55, 671–685.e10 (2022).

    CAS  PubMed  Google Scholar 

  168. Meng, L., Jin, W. & Wang, X. RIP3-mediated necrotic cell death accelerates systematic inflammation and mortality. Proc. Natl Acad. Sci. USA 112, 11007–11012 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhu, X. et al. Spontaneous necroptosis and autoinflammation are blocked by an inhibitory phosphorylation on MLKL during neonatal development. Cell Res. 32, 407–410 (2022).

    CAS  PubMed  Google Scholar 

  170. Newton, K. et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343, 1357–1360 (2014).

    CAS  PubMed  Google Scholar 

  171. Meng, Y. et al. Human RIPK3 maintains MLKL in an inactive conformation prior to cell death by necroptosis. Nat. Commun. 12, 6783 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Morgan, M. J. & Kim, Y. S. The serine threonine kinase RIP3: lost and found. BMB Rep. 48, 303–312 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Koo, G. B. et al. Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res. 25, 707–725 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Nugues, A. L. et al. RIP3 is downregulated in human myeloid leukemia cells and modulates apoptosis and caspase-mediated p65/RelA cleavage. Cell Death Dis. 5, e1384 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Höckendorf, U. et al. RIPK3 restricts myeloid leukemogenesis by promoting cell death and differentiation of leukemia initiating cells. Cancer Cell 30, 75–91 (2016).

    PubMed  Google Scholar 

  176. Geserick, P. et al. Absence of RIPK3 predicts necroptosis resistance in malignant melanoma. Cell Death Dis. 6, e1884 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Stoll, G. et al. Pro-necrotic molecules impact local immunosurveillance in human breast cancer. Oncoimmunology 6, e1299302 (2017).

    PubMed  PubMed Central  Google Scholar 

  178. Feng, X. et al. Receptor-interacting protein kinase 3 is a predictor of survival and plays a tumor suppressive role in colorectal cancer. Neoplasma 62, 592–601 (2015).

    CAS  PubMed  Google Scholar 

  179. Li, Y., Ge, D. & Lu, C. The SMART App: an interactive web application for comprehensive DNA methylation analysis and visualization. Epigenetics Chromatin 12, 71 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Liu, S., Joshi, K., Denning, M. F. & Zhang, J. RIPK3 signaling and its role in the pathogenesis of cancers. Cell. Mol. Life Sci. 78, 7199–7217 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Najafov, A. et al. BRAF and AXL oncogenes drive RIPK3 expression loss in cancer. PLoS Biol. 16, e2005756 (2018).

    PubMed  PubMed Central  Google Scholar 

  182. Colbert, L. E. et al. Pronecrotic mixed lineage kinase domain-like protein expression is a prognostic biomarker in patients with early-stage resected pancreatic adenocarcinoma. Cancer 119, 3148–3155 (2013).

    CAS  PubMed  Google Scholar 

  183. Li, X. et al. Association of mixed lineage kinase domain-like protein expression with prognosis in patients with colon cancer. Technol. Cancer Res. Treat. 16, 428–434 (2017).

    CAS  PubMed  Google Scholar 

  184. Ruan, J., Mei, L., Zhu, Q., Shi, G. & Wang, H. Mixed lineage kinase domain-like protein is a prognostic biomarker for cervical squamous cell cancer. Int. J. Clin. Exp. Pathol. 8, 15035–15038 (2015).

    PubMed  PubMed Central  Google Scholar 

  185. Moriwaki, K., Bertin, J., Gough, P. J., Orlowski, G. M. & Chan, F. K. Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis. 6, e1636 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Liu, P. et al. Dysregulation of TNFα-induced necroptotic signaling in chronic lymphocytic leukemia: suppression of CYLD gene by LEF1. Leukemia 26, 1293–1300 (2012).

    CAS  PubMed  Google Scholar 

  187. Ding, L. et al. Perspective on oncogenic processes at the end of the beginning of cancer genomics. Cell 173, 305–320.e10 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Taylor, A. M. et al. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 33, 676–689.e3 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Chen, T., Sahin, A. & Aldaz, C. M. Deletion map of chromosome 16q in ductal carcinoma in situ of the breast: refining a putative tumor suppressor gene region. Cancer Res. 56, 5605–5609 (1996).

    CAS  PubMed  Google Scholar 

  190. Knuth, A. K. et al. Interferons transcriptionally up-regulate MLKL expression in cancer cells. Neoplasia 21, 74–81 (2019).

    CAS  PubMed  Google Scholar 

  191. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  192. Crusz, S. M. & Balkwill, F. R. Inflammation and cancer: advances and new agents. Nat. Rev. Clin. Oncol. 12, 584–596 (2015).

    CAS  PubMed  Google Scholar 

  193. Philipp, S., Sosna, J. & Adam, D. Cancer and necroptosis: friend or foe? Cell. Mol. Life Sci. 73, 2183–2193 (2016).

    CAS  PubMed  Google Scholar 

  194. Vucur, M. et al. Sublethal necroptosis signaling promotes inflammation and liver cancer. Immunity 56, 1578–1595.e8 (2023).

    CAS  PubMed  Google Scholar 

  195. Lomphithak, T. et al. Tumor necroptosis is correlated with a favorable immune cell signature and programmed death-ligand 1 expression in cholangiocarcinoma. Sci. Rep. 11, 11743 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Su, Z., Yang, Z., Xie, L., DeWitt, J. P. & Chen, Y. Cancer therapy in the necroptosis era. Cell Death Differ. 23, 748–756 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Philipp, S., Sosna, J., Plenge, J., Kalthoff, H. & Adam, D. Homoharringtonine, a clinically approved anti-leukemia drug, sensitizes tumor cells for TRAIL-induced necroptosis. Cell Commun. Signal. 13, 25 (2015).

    PubMed  PubMed Central  Google Scholar 

  198. Thapa, R. J. et al. Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc. Natl Acad. Sci. USA 110, E3109–E3118 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Karunakaran, D. et al. Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis. Sci. Adv. 2, e1600224 (2016).

    PubMed  PubMed Central  Google Scholar 

  200. Bian, P. et al. MLKL mediated necroptosis accelerates JEV-induced neuroinflammation in mice. Front. Microbiol. 8, 303 (2017).

    PubMed  PubMed Central  Google Scholar 

  201. Stutz, M. D. et al. Necroptotic signaling is primed in Mycobacterium tuberculosis-infected macrophages, but its pathophysiological consequence in disease is restricted. Cell Death Differ. 25, 951–965 (2018).

    CAS  PubMed  Google Scholar 

  202. Sarhan, J. et al. Constitutive interferon signaling maintains critical threshold of MLKL expression to license necroptosis. Cell Death Differ. 26, 332–347 (2019).

    CAS  PubMed  Google Scholar 

  203. McComb, S. et al. Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages. Proc. Natl Acad. Sci. USA 111, E3206–E3213 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Tanzer, M. C. et al. Combination of IAP antagonist and IFNγ activates novel caspase-10- and RIPK1-dependent cell death pathways. Cell Death Differ. 24, 481–491 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Shkarina, K. et al. Optogenetic activators of apoptosis, necroptosis, and pyroptosis. J. Cell Biol. 221, e4762 (2022).

    Google Scholar 

  206. Orozco, S. et al. RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis. Cell Death Differ. 21, 1511–1521 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Itchaki, G. & Brown, J. R. The potential of venetoclax (ABT-199) in chronic lymphocytic leukemia. Ther. Adv. Hematol. 7, 270–287 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Shimabukuro-Vornhagen, A. et al. Cytokine release syndrome. J. Immunother. Cancer 6, 56 (2018).

    PubMed  PubMed Central  Google Scholar 

  209. Liu, J., Blake, S. J., Smyth, M. J. & Teng, M. W. Improved mouse models to assess tumour immunity and irAEs after combination cancer immunotherapies. Clin. Transl. Immunol. 3, e22 (2014).

    Google Scholar 

  210. Scarpitta, A., Hacker, U. T., Büning, H., Boyer, O. & Adriouch, S. Pyroptotic and necroptotic cell death in the tumor microenvironment and their potential to stimulate anti-tumor immune responses. Front. Oncol. 11, 731598 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Tong, X. et al. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J. Hematol. Oncol. 15, 174 (2022).

    PubMed  PubMed Central  Google Scholar 

  212. Meric-Bernstam, F., Larkin, J., Tabernero, J. & Bonini, C. Enhancing anti-tumour efficacy with immunotherapy combinations. Lancet 397, 1010–1022 (2020).

    PubMed  Google Scholar 

  213. O’Donnell, M. A. et al. Caspase 8 inhibits programmed necrosis by processing CYLD. Nat. Cell Biol. 13, 1437–1442 (2011).

    PubMed  PubMed Central  Google Scholar 

  214. Newton, K. & Manning, G. Necroptosis and inflammation. Annu. Rev. Biochem. 85, 743–763 (2016).

    CAS  PubMed  Google Scholar 

  215. Vanlangenakker, N., Vanden Berghe, T. & Vandenabeele, P. Many stimuli pull the necrotic trigger, an overview. Cell Death Differ. 19, 75–86 (2012).

    CAS  PubMed  Google Scholar 

  216. Upton, J. W., Kaiser, W. J. & Mocarski, E. S. Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7, 302–313 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112–119 (2005). This paper provides the first definition of necroptosis and describes necrostatin 1 as a molecule that inhibits RIPK1 activity and necroptosis.

    CAS  PubMed  Google Scholar 

  218. Peltzer, N., Darding, M. & Walczak, H. Holding RIPK1 on the ubiquitin leash in TNFR1 signaling. Trends Cell Biol. 26, 445–461 (2016).

    CAS  PubMed  Google Scholar 

  219. Schwarzer, R., Laurien, L. & Pasparakis, M. New insights into the regulation of apoptosis, necroptosis, and pyroptosis by receptor interacting protein kinase 1 and caspase-8. Curr. Opin. Cell Biol. 63, 186–193 (2020).

    CAS  PubMed  Google Scholar 

  220. Reis, E. & Sousa, C. Dendritic cells in a mature age. Nat. Rev. Immunol. 6, 476–483 (2006).

    Google Scholar 

  221. Birmpilis, A. I. et al. Immunogenic cell death, DAMPs and prothymosin α as a putative anticancer immune response biomarker. Cells 11, 1415 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H. & Vandenabeele, P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 15, 135–147 (2014).

    CAS  PubMed  Google Scholar 

  223. Conrad, M., Angeli, J. P., Vandenabeele, P. & Stockwell, B. R. Regulated necrosis: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 15, 348–366 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103 (2017).

    CAS  PubMed  Google Scholar 

  225. Frank, D. & Vince, J. E. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ. 26, 99–114 (2019).

    PubMed  Google Scholar 

  226. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    CAS  PubMed  Google Scholar 

  227. Zhang, Z. et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579, 415–420 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Zhou, Z. et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 368, eaaz7548 (2020).

    CAS  PubMed  Google Scholar 

  229. Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).

    CAS  PubMed  Google Scholar 

  230. Hou, J. et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat. Cell Biol. 22, 1264–1275 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Arandjelovic, S. & Ravichandran, K. S. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 16, 907–917 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Storozynsky, Q. & Hitt, M. M. The impact of radiation-induced DNA damage on cGAS-STING-mediated immune responses to cancer. Int. J. Mol. Sci. 21, 8877 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Reisländer, T., Groelly, F. J. & Tarsounas, M. DNA damage and cancer immunotherapy: a STING in the tale. Mol. Cell 80, 21–28 (2020).

    PubMed  Google Scholar 

  234. Mohseni, G. et al. The function of cGAS-STING pathway in treatment of pancreatic cancer. Front. Immunol. 12, 781032 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Riley, J. S. & Tait, S. W. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 21, e49799 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Vanpouille-Box, C., Demaria, S., Formenti, S. C. & Galluzzi, L. Cytosolic DNA sensing in organismal tumor control. Cancer Cell 34, 361–378 (2018).

    CAS  PubMed  Google Scholar 

  237. Hänggi, K. & Ruffell, B. Cell death, therapeutics, and the immune response in cancer. Trends Cancer 9, 381–396 (2023).

    PubMed  Google Scholar 

  238. Galluzzi, L., Kepp, O., Chan, F. K. & Kroemer, G. Necroptosis: mechanisms and relevance to disease. Annu. Rev. Pathol. 12, 103–130 (2017).

    CAS  PubMed  Google Scholar 

  239. Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).

    CAS  PubMed  Google Scholar 

  240. Basu, S., Binder, R. J., Suto, R., Anderson, K. M. & Srivastava, P. K. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway. Int. Immunol. 12, 1539–1546 (2000).

    CAS  PubMed  Google Scholar 

  241. Garg, A. D. et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J. 31, 1062–1079 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Iyer, S. S. et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc. Natl Acad. Sci. USA 106, 20388–20393 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Allam, R., Darisipudi, M. N., Tschopp, J. & Anders, H. J. Histones trigger sterile inflammation by activating the NLRP3 inflammasome. Eur. J. Immunol. 43, 3336–3342 (2013).

    CAS  PubMed  Google Scholar 

  244. Jahr, S. et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 61, 1659–1665 (2001).

    CAS  PubMed  Google Scholar 

  245. Ravichandran, K. S. Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity 35, 445–455 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Ravichandran, K. S. “Recruitment signals” from apoptotic cells: invitation to a quiet meal. Cell 113, 817 (2003).

    CAS  PubMed  Google Scholar 

  247. Lüthi, A. U. & Martin, S. J. The CASBAH: a searchable database of caspase substrates. Cell Death Differ. 14, 641–650 (2007).

    PubMed  Google Scholar 

  248. Tang, R. et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J. Hematol. Oncol. 13, 110 (2020).

    PubMed  PubMed Central  Google Scholar 

  249. Steinman, R. M. & Nussenzweig, M. C. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc. Natl Acad. Sci. USA 99, 351–358 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Steinman, R. M. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9, 271–296 (1991).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.M. is funded by Breast Cancer Now as part of Programme Funding to the Breast Cancer Now Toby Robins Research Centre (CTR-QR14-007) and by Cancer Research UK (CRUK; C26866/A24399). D.A. is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — Projektnummer 125440785 — SFB 877, Project B2. J.S. is funded by NHMRC Investigator Grant 1195038.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Pascal Meier, Dieter Adam or John Silke.

Ethics declarations

Competing interests

J.S. contributes to a project developing necroptosis inhibitors in collaboration with Anaxis Pharma. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Junying Yuan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

SMARTapp: http://www.bioinfo-zs.com/smartapp

TCGA: https://www.cancer.gov/tcga

Glossary

Adjuvanticity

Refers to the property of a substance, called an adjuvant, that enhances the immune response to an antigen.

Anoikis

A cell death mechanism that occurs when cells detach from their surrounding extracellular matrix or lose contact with neighbouring cells.

Cancer epitopes

Short protein or peptide fragments derived from cancer-associated proteins that are recognized by the immune system as foreign or abnormal.

CD8+ T cell cross-priming

A process by which dendritic cells present antigens from extracellular pathogens or abnormal cells to CD8+ T cells, also known as cytotoxic T lymphocytes. In addition, immunogenic dendritic cells provide signal 2 and signal 3, which trigger the activation of cytotoxic T lymphocytes.

Cold tumours

A term used in the field of cancer immunology to describe tumours that have a limited immune response or a low presence of immune cells within the tumour microenvironment.

Damage-associated molecular patterns

(DAMPs). Endogenous molecules that are released by stressed, damaged or dying cells.

Death receptors

The receptors for TNF, FAS ligand and TRAIL that contain an intracellular protein–protein interaction domain, known as the death domain, and can mediate cell death.

Eat-me signals

Molecular cues or markers displayed on the surface of cells that are undergoing apoptosis or other forms of cell death.

Efferocytosis

The process by which dead or dying cells are recognized, engulfed and cleared by phagocytes.

Endogenous retroelements

Endogenous genetic elements capable of self-amplification, found within the genome of eukaryotic organisms, including retrotransposons and endogenous retroviruses; their DNA can be transcribed into RNA, converted back into identical DNA via reverse transcription, and then inserted into the genome at particular target sites.

Endosomal sorting complexes required for transport (ESCRT) machinery

A group of protein complexes that play a crucial role in various membrane remodelling and trafficking processes within eukaryotic cells.

Engulfment process

Also known as phagocytosis. A cellular mechanism by which specialized cells called phagocytes engulf and internalize particles, cells or other materials from their surroundings.

Entotic cell death

A form of cellular cannibalism in which one cell engulfs and kills another cell through microtubule-associated protein 1A/1B light chain 3-associated phagocytosis and the lysosomal degradation pathway.

Ferroptosis

A form of cell death characterized by the accumulation of lipid peroxides, particularly those containing polyunsaturated fatty acids, which leads to membrane damage and, ultimately, cell death.

Find-me signals

Soluble signals that are released by dying cells into the milieu to attract phagocytes and stimulate their scavenging potential.

Flotillins

A family of membrane-associated proteins that are involved in various cellular processes related to membrane organization, signalling and trafficking.

Immune-related adverse events

(irAEs). A set of side effects or complications that can arise as a result of the immune system being activated by immunotherapy treatments such as immune-checkpoint inhibitors, cancer vaccines and other immune-modulating therapies.

Immune tolerance

A state of unresponsiveness of the immune system to substances or tissue that would otherwise have the capacity to elicit an immune response.

Inflammasome

A large supramolecular platform that mediates the activation of a caspase 1-dependent pro-inflammatory response characterized by the production of IL-1β and IL-18.

Mitochondrial outer membrane permeabilization

(MOMP). Refers to a crucial event in the process of the intrinsic cell death pathway of apoptosis, where the outer mitochondrial membrane becomes permeable, leading to the release of various pro-apoptotic factors from the mitochondria into the cytoplasm.

Mitochondrial permeability transition-driven necrosis

A form of necrotic cell death that is driven by mitochondrial dysfunction by the opening of the mitochondrial permeability transition pore and is triggered by increases in matrix levels of Ca2+ and reactive oxygen species.

Necrosome

An amyloid-like supramolecular platform that enables the physical and functional interaction of the proteins RIPK1, RIPK3 and MLKL, triggering necroptosis.

NETosis

A unique form of neutrophil cell death that is characterized by the release of decondensed chromatin to form neutrophil extracellular traps (NETs) that capture microbes but can also capture and activate platelets to trigger clotting.

Nucleic acid sensors

Intracellular pattern recognition receptors involved in the detection of cytosolic nucleic acids.

Oxeiptosis

A reactive oxygen species-induced cell death pathway that leads to caspase-independent, non-inflammatory cell death and involves the proteins KEAP1, PGAM5 and AIFM1.

Oxytosis

Also known as oxidative stress-induced cell death. A form of cell death that is triggered by excessive oxidative stress within a cell.

Parthanatos

A form of cell death that involves hyper-activation of poly(ADP-ribose) polymerase enzymes and the subsequent depletion of cellular NAD+ and ATP.

Pattern recognition receptors

(PRRs). Innate immune receptors capable of recognizing pathogen-associated molecular patterns or host-derived DAMPs.

Persister cells

Subpopulations of cells that resist treatment by changing to a state of dormancy or quiescence and which can reactivate and multiply when treatment has stopped.

Short interspersed nuclear elements

Non-autonomous, non-coding transposable DNA elements of about 100–700 base pairs in length that amplify themselves throughout eukaryotic genomes, often through RNA intermediates.

SMAC mimetics

A class of small pharmacological molecules that mimic the amino-terminal inhibitor of apoptosis (IAP)-binding motif and selectively bind to the baculoviral IAP repeat 2 (BIR2) and BIR3 domains of numerous IAPs.

Suppressive myeloid cells

A heterogeneous group of immune cells from the myeloid lineage with immunosuppressive activities.

Therapeutic index

The ratio of the dose of a drug that exerts toxicity in 50% of the population to the dose that exerts a therapeutic or effective response in 50% of the population.

Tumour lysis syndrome

A potentially life-threatening medical condition that can occur as a result of rapid and massive cell breakdown in response to cancer treatment.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meier, P., Legrand, A.J., Adam, D. et al. Immunogenic cell death in cancer: targeting necroptosis to induce antitumour immunity. Nat Rev Cancer 24, 299–315 (2024). https://doi.org/10.1038/s41568-024-00674-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-024-00674-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing