Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multistep topological transitions among meron and skyrmion crystals in a centrosymmetric magnet

Abstract

Topological swirling spin textures, such as skyrmions and merons, have recently attracted much attention as potential building blocks for high-density magnetic information devices. Controlling the transformation between different types of these quasiparticles is an important challenge. To date, these transitions have mostly been limited to a few non-centrosymmetric systems, where they are driven by the Dzyaloshinskii–Moriya interaction. Here we demonstrate multistep topological transitions among a variety of meron and skyrmion crystal states in a centrosymmetric magnet GdRu2Ge2. These are governed by the competition between Ruderman–Kittel–Kasuya–Yosida interactions at inequivalent wave vectors. These findings demonstrate that even a simple centrosymmetric magnet with competing interactions can be a promising material platform to realize a richer variety of magnetic quasiparticles with distinctive symmetry and topology, whose stability can be tuned by various external stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Magnetic and electrical transport properties of GdRu2Ge2.
Fig. 2: RXS measurements for GdRu2Ge2.
Fig. 3: Experimentally deduced magnetic structures for GdRu2Ge2.
Fig. 4: Theoretical magnetic structures obtained by simulated annealing.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request. Source data are provided with this paper.

Code availability

All code used to produce these results is available from the corresponding authors upon reasonable request.

References

  1. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article  CAS  ADS  Google Scholar 

  2. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Göbel, B., Mertig, I. & Tretiakov, O. A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895, 1–28 (2021).

    Article  MathSciNet  ADS  Google Scholar 

  4. Yu, X. Z. et al. Transformation between meron and skyrmion topological spin textures in a chiral magnet. Nature 564, 95–98 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Lin, S.-Z. et al. Skyrmion fractionalization and merons in chiral magnets with easy-plane anisotropy. Phys. Rev. B 91, 224407 (2015).

    Article  ADS  Google Scholar 

  6. Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Nych, A. et al. Spontaneous formation and dynamics of half-skyrmions in a chiral liquid-crystal film. Nat. Phys. 13, 1215–1220 (2017).

    Article  CAS  Google Scholar 

  8. Ackerman, P. J., Boyle, T. & Smalyukh, I. I. Squirming motion of baby skyrmions in nematic fluids. Nat. Comm. 8, 673 (2017).

    Article  ADS  Google Scholar 

  9. Tai, J.-S. B. & Smalyukh, I. Three-dimensional crystals of adaptive knots. Science 365, 1449–1453 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Foster, D. et al. Two-dimensional skyrmion bags in liquid crystals and ferromagnets. Nat. Phys. 15, 655–659 (2019).

    Article  CAS  Google Scholar 

  11. Göbel, B. et al. Magnetic bimerons as skyrmion analogues in in-plane magnets. Phys. Rev. B 99, 060407(R) (2019).

    Article  ADS  Google Scholar 

  12. Tokura, Y. & Kanazawa, N. Magnetic skyrmion materials. Chem. Rev. 121, 2857–2897 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Rößler, U. K. et al. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).

    Article  PubMed  ADS  Google Scholar 

  14. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  PubMed  ADS  Google Scholar 

  15. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Koshibae, W. & Nagaosa, N. Berry curvature and dynamics of a magnetic bubble. New J. Phys. 18, 045007 (2016).

    Article  ADS  Google Scholar 

  17. Seki, S., Yu, X. Z., Ishiwata, S. & Tokura, Y. Observation of skyrmions in a multiferroic material. Science 336, 198 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Tokunaga, Y. et al. A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat. Commun. 6, 7638 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Nayak, A. K. et al. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature 548, 561–566 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Karube, K. et al. Room-temperature antiskyrmions and sawtooth surface textures in a non-centrosymmetric magnet with S4 symmetry. Nat. Mater. 20, 335–340 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Hayami, S., Ozawa, R. & Motome, Y. Effective bilinear-biquadratic model for noncoplanar ordering in itinerant magnets. Phys. Rev. B 95, 224424 (2017).

    Article  ADS  Google Scholar 

  22. Hayami, S. & Motome, Y. Square skyrmion crystal in centrosymmetric itinerant magnets. Phys. Rev. B 103, 024439 (2021).

    Article  CAS  ADS  Google Scholar 

  23. Martin, I. & Batista, C. D. Itinerant electron-driven chiral magnetic ordering and spontaneous quantum Hall effect in triangular lattice models. Phys. Rev. Lett. 101, 156402 (2008).

    Article  PubMed  ADS  Google Scholar 

  24. Okubo, T. et al. Multiple-q states and the skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. Phys. Rev. Lett. 108, 017206 (2012).

    Article  PubMed  ADS  Google Scholar 

  25. Leonov, A. O. & Mostovoy, M. Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet. Nat. Commun. 6, 8275 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Wang, Z. et al. Meron, skyrmion, and vortex crystals in centrosymmetric tetragonal magnets. Phys. Rev. B 103, 104408 (2021).

    Article  CAS  ADS  Google Scholar 

  27. Bouaziz, J. et al. Fermi-surface origin of skyrmion lattices in centrosymmetric rare-earth intermetallics. Phys. Rev. Lett. 128, 157206 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Kurumaji, T. et al. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet. Science 365, 914–918 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Khanh, N. D. et al. Nanometric square skyrmion lattice in a centrosymmetric tetragonal magnet. Nat. Nanotechnol. 15, 444–449 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Hirschberger, M. et al. Skyrmion phase and competing magnetic orders on a breathing kagomé lattice. Nat. Commun. 10, 5831 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Kaneko, K. et al. Unique helical magnetic order and field-induced phase in trillium lattice antiferromagnet EuPtSi. J. Phys. Soc. Jpn 88, 13702 (2019).

    Article  Google Scholar 

  32. Yasui, Y. et al. Imaging the coupling between itinerant electrons and localised moments in the centrosymmetric skyrmion magnet GdRu2Si2. Nat. Commun. 11, 5925 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Khanh, N. D. et al. Zoology of multiple-Q spin textures in a centrosymmetric tetragonal magnet with itinerant electrons. Adv. Sci. 9, 2105452 (2022).

    Article  Google Scholar 

  34. Takagi, R. et al. Square and rhombic lattices of magnetic skyrmions in a centrosymmetric binary compound. Nat. Commun. 13, 1472 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Li, Z. et al. Discovery of topological magnetic textures near room temperature in quantum magnet TbMn6Sn6. Adv. Mater. 35, 2211164 (2023).

    Article  CAS  Google Scholar 

  36. Garnier, A., Gignoux, D., Schmitt, D. & Shigeoka, T. Giant magnetic anisotropy in tetragonal GdRu2Ge2 and GdRu2Si2. Phys. B 222, 80–86 (1996).

    Article  CAS  ADS  Google Scholar 

  37. Neubauer, A. et al. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Nagaosa, N. et al. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010).

    Article  ADS  Google Scholar 

  39. Zadorozhnyi, A. & Dahnovsky, Y. Topological Hall effect in three-dimensional centrosymmetric magnetic skyrmion crystals. Phys. Rev. B 107, 054436 (2023).

    Article  CAS  ADS  Google Scholar 

  40. Adams, T. et al. Long-range crystalline nature of the skyrmion lattice in MnSi. Phys. Rev. Lett. 107, 217206 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Blume, M. in Resonant Anomalous X-Ray Scattering (eds Materlik, G. et al.) 495–512 (Elsevier, 1994).

  42. Hayami, S. Multiple skyrmion crystal phases by itinerant frustration in centrosymmetric tetragonal magnets. J. Phys. Soc. Jpn 91, 023705 (2022).

    Article  ADS  Google Scholar 

  43. Peng, L. et al. Controlled transformation of skyrmions and antiskyrmions in a non-centrosymmetric magnet. Nat. Nanotechnol. 15, 181–186 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Jena, J. et al. Observation of fractional spin textures in a Heusler material. Nat. Commun. 11, 1115 (2020).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  45. Zheng, F. et al. Experimental observation of chiral magnetic bobbers in B20-type FeGe. Nat. Nanotechnol. 13, 451–455 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Oike, H. et al. Interplay between topological and thermodynamic stability in a metastable magnetic skyrmion lattice. Nat. Phys. 12, 62–66 (2016).

    Article  CAS  Google Scholar 

  47. Itoh, S. et al. High Resolution Chopper Spectrometer (HRC) at J-PARC. Nucl. Instrum. Methods Phys. Res. A 631, 90–97 (2011).

    Article  CAS  ADS  Google Scholar 

  48. Azuah, R. T. et al. DAVE: a comprehensive software suite for the reduction, visualization, and analysis of low energy neutron spectroscopic data. J. Res. Natl Inst. Stand. Technol. 114, 341–358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank Y. Motome, A. Kikkawa, X. Z. Yu, N. Shibata, T. Seki and S. Toyama for enlightening discussions and experimental helps. This work was partly supported by Grants-In-Aid for Scientific Research (grant nos 18H03685, 20H00349, 21H04440, 21H04990, 21K13876, 21K18595, 22H04965, 22H04468, 22KJ1061, 23K13069 and 23H04869) from JSPS, PRESTO (grant nos JPMJPR18L5, JPMJPR20B4, JPMJPR20L8) and CREST (grant no. JPMJCR1874, JPMJCR23O4) from JST, Katsu Research Encouragement Award and UTEC-UTokyo FSI Research Grant Program of the University of Tokyo, Asahi Glass Foundation and Murata Science Foundation. This work is based on experiments performed at Materials and Life Science Experimental Facility (MLF) in the Japan Proton Accelerator Research Complex (J-PARC) (Proposal No. 2020S01) and Photon Factory in High Energy Accelerator Research Organization (Proposal No. 2020G665). The illustration of crystal structure was drawn by VESTA49.

Author information

Authors and Affiliations

Authors

Contributions

S.S. and R.T. conceived the project. H.Y. and R.T. grew single crystals and characterized the magnetic and transport properties with the assistance of S.S., N.D.K. and Y.T. RXS measurements were carried out by H.Y., R.T., J.J. and T.N. with the assistance of H. Saito, H. Sagayama, H.N. and T.A. Neutron scattering measurements were carried out by J.J., H. Saito., S.I. and T.N. Theoretical simulation was performed by S.H. The manuscript was written by H.Y. and S.S. with the assistance of S.H. and T.N. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to H. Yoshimochi or S. Seki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Sujit Das, Jonathan White and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Notes 1–12 and Table 1.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshimochi, H., Takagi, R., Ju, J. et al. Multistep topological transitions among meron and skyrmion crystals in a centrosymmetric magnet. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02445-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02445-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing