Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Search for decoherence from quantum gravity with atmospheric neutrinos

Abstract

Neutrino oscillations at the highest energies and longest baselines can be used to study the structure of spacetime and test the fundamental principles of quantum mechanics. If the metric of spacetime has a quantum mechanical description, its fluctuations at the Planck scale are expected to introduce non-unitary effects that are inconsistent with the standard unitary time evolution of quantum mechanics. Neutrinos interacting with such fluctuations would lose their quantum coherence, deviating from the expected oscillatory flavour composition at long distances and high energies. Here we use atmospheric neutrinos detected by the IceCube South Pole Neutrino Observatory in the energy range of 0.5–10.0 TeV to search for coherence loss in neutrino propagation. We find no evidence of anomalous neutrino decoherence and determine limits on neutrino–quantum gravity interactions. The constraint on the effective decoherence strength parameter within an energy-independent decoherence model improves on previous limits by a factor of 30. For decoherence effects scaling as E2, our limits are advanced by more than six orders of magnitude beyond past measurements compared with the state of the art.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the quantum gravitational decoherence effect.
Fig. 2: Decoherence of an oscillating neutrino ensemble.
Fig. 3: Example neutrino oscillogram and energy spectrum.
Fig. 4: Test statistic distributions.
Fig. 5: Comparison with previous results.

Similar content being viewed by others

Data availability

A list of selected event energies and zenith angles, a Monte Carlo simulation set and information on systematic uncertainty effects, along with other public IceCube data releases, are available at https://icecube.wisc.edu/science/data-releases/.

Code availability

IceCube maintains an open-source repository of software tools for handling the IceCube data at https://github.com/IceCubeOpenSource. We also include scripts for handling the public data within the data release at https://icecube.wisc.edu/science/data-releases/.

References

  1. Wheeler, J. A. Geons. Phys. Rev. 97, 511–536 (1955).

    Article  MathSciNet  ADS  Google Scholar 

  2. Carlip, S. Spacetime foam: a review. Rep. Progr. Phys. 86, 066001 (2023).

    Article  MathSciNet  ADS  Google Scholar 

  3. Carney, D., Stamp, P. C. & Taylor, J. M. Tabletop experiments for quantum gravity: a user’s manual. Class. Quantum Grav. 36, 034001 (2019).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  4. Tanabashi, M. et al. Review of particle physics: particle data groups. Phys. Rev. D 98, 030001 (2018).

    Article  ADS  Google Scholar 

  5. Jung, C. K., McGrew, C., Kajita, T. & Mann, T. Oscillations of atmospheric neutrinos. Annu. Rev. Nucl. Part. Sci. 51, 451–488 (2001).

    Article  CAS  ADS  Google Scholar 

  6. Gaisser, T. K. & Honda, M. Flux of atmospheric neutrinos. Annu. Rev. Nucl. Part. Sci. 52, 153–199 (2002).

    Article  CAS  ADS  Google Scholar 

  7. Schlosshauer, M. Decoherence and the Quantum-to-Classical Transition (Springer, 2007).

  8. Hawking, S. W. Virtual black holes. Phys. Rev. D 53, 3099–3107 (1996).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  9. ’t Hooft, G. Virtual black holes and space-time structure. Found. Phys. 48, 1134–1149 (2018).

    Article  MathSciNet  ADS  Google Scholar 

  10. Stuttard, T. & Jensen, M. Neutrino decoherence from quantum gravitational stochastic perturbations. Phys. Rev. D 102, 115003 (2020).

    Article  CAS  ADS  Google Scholar 

  11. Penrose, R. On gravity’s role in quantum state reduction. Gen. Relat. Gravit. 28, 581–600 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  12. Diosi, L. A universal master equation for the gravitational violation of quantum mechanics. Phys. Lett. A 120, 377–381 (1987).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  13. Arzano, M., D’Esposito, V. & Gubitosi, G. Fundamental decoherence from quantum spacetime. Commun. Phys. 6, 242 (2023).

    Article  Google Scholar 

  14. D’Esposito, V. & Gubitosi, G. Constraints on quantum spacetime-induced decoherence from neutrino oscillations. Preprint at https://arxiv.org/abs/2306.14778 (2023).

  15. Goklu, E., Lammerzahl, C. & Breuer, H.-P. Metric fluctuations and decoherence. In 12th Marcel Grossmann Meeting on General Relativity 2420–2422 (2009).

  16. Petruzziello, L. & Illuminati, F. Quantum gravitational decoherence from fluctuating minimal length and deformation parameter at the Planck scale. Nat. Commun. 12, 4449 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Stuttard, T. Neutrino signals of lightcone fluctuations resulting from fluctuating spacetime. Phys. Rev. D 104, 056007 (2021).

    Article  CAS  ADS  Google Scholar 

  18. Donadi, S. et al. Underground test of gravity-related wave function collapse. Nat. Phys. 17, 74–78 (2021).

    Article  CAS  Google Scholar 

  19. Arnquist, I. et al. Search for spontaneous radiation from wave function collapse in the Majorana demonstrator. Phys. Rev. Lett. 129, 080401 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Aartsen, M. G. et al. The IceCube neutrino observatory: instrumentation and online systems. JINST 12, 03012 (2017).

    Article  Google Scholar 

  21. Abbasi, R. et al. The IceCube data acquisition system: signal capture, digitization, and timestamping. Nucl. Instrum. Methods Phys. Res., Sect. A 601, 294–316 (2009).

    Article  CAS  ADS  Google Scholar 

  22. Abbasi, R. et al. The design and performance of IceCube DeepCore. Astropart. Phys. 35, 615–624 (2012).

    Article  ADS  Google Scholar 

  23. Aartsen, M. G. Observation of high-energy astrophysical neutrinos in three years of IceCube data. Phys. Rev. Lett. 113, 101101 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Christian, J. Testing gravity-driven collapse of the wave function via cosmogenic neutrinos. Phys. Rev. Lett. 95, 160403 (2005).

    Article  PubMed  ADS  Google Scholar 

  25. Hellmann, D., Päs, H. & Rani, E. Searching new particles at neutrino telescopes with quantum-gravitational decoherence. Phys. Rev. D 105, 055007 (2022).

    Article  CAS  ADS  Google Scholar 

  26. Aartsen, M. G. et al. Neutrino interferometry for high-precision tests of Lorentz symmetry with IceCube. Nat. Phys. 14, 961–966 (2018).

    Article  Google Scholar 

  27. Giunti, C. & Kim, C. W. Fundamentals of Neutrino Physics and Astrophysics (Oxford Univ. Press, 2007).

  28. Mikheev, S. P. & Smirnov, A. Y. Resonance oscillations of neutrinos in matter. Sov. Phys. Usp. 30, 759–790 (1987).

    Article  ADS  Google Scholar 

  29. Cooper-Sarkar, A., Mertsch, P. & Sarkar, S. The high energy neutrino cross-section in the Standard Model and its uncertainty. J. High Energ. Phys. 2011, 042 (2011).

    Article  ADS  Google Scholar 

  30. IceCube Collaboration. Measurement of the multi-TeV neutrino interaction cross-section with icecube using Earth absorption. Nature 551, 596–600 (2017).

  31. Beacom, J. F., Crotty, P. & Kolb, E. W. Enhanced signal of astrophysical tau neutrinos propagating through Earth. Phys. Rev. D 66, 021302 (2002).

    Article  ADS  Google Scholar 

  32. Argüelles, C. A., Garg, D., Patel, S., Reno, M. H. & Safa, I. Tau depolarization at very high energies for neutrino telescopes. Phys. Rev. D 106, 043008 (2022).

    Article  ADS  Google Scholar 

  33. Argüelles, C. A., Salvado, J. & Weaver, C. N. nuSQuIDS: a toolbox for neutrino propagation. Comput. Phys. Commun. 277, 108346 (2022).

    Article  MathSciNet  Google Scholar 

  34. Fedynitch, A., Engel, R., Gaisser, T. K., Riehn, F. & Stanev, T. Calculation of conventional and prompt lepton fluxes at very high energy. EPJ Web Conf. 99, 08001 (2015).

    Article  Google Scholar 

  35. Bhattacharya, A., Enberg, R., Reno, M. H., Sarcevic, I. & Stasto, A. Perturbative charm production and the prompt atmospheric neutrino flux in light of RHIC and LHC. J. High Energ. Phys. 06, 110 (2015).

    Article  ADS  Google Scholar 

  36. Safa, I. et al. TauRunner: a public Python program to propagate neutral and charged leptons. Comput. Phys. Commun. 278, 108422 (2022).

    Article  CAS  Google Scholar 

  37. Esteban, I., Gonzalez-Garcia, M., Maltoni, M., Martinez-Soler, I. & Schwetz, T. Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity. J. High Energ. Phys. 2017, 087 (2017).

    Article  Google Scholar 

  38. Gago, A. M., Santos, E. M., Teves, W. J. C. & Zukanovich Funchal, R. A study on quantum decoherence phenomena with three generations of neutrinos. Preprint at https://arxiv.org/abs/hep-ph/0208166 (2002).

  39. Benatti, F. & Floreanini, R. Open system approach to neutrino oscillations. J. High Energ. Phys. 02, 032 (2000).

    Article  ADS  Google Scholar 

  40. Carrasco, J. C., Díaz, F. N. & Gago, A. M. Probing CPT breaking induced by quantum decoherence at DUNE. Phys. Rev. D 99, 075022 (2019).

    Article  CAS  ADS  Google Scholar 

  41. Buoninfante, L., Capolupo, A., Giampaolo, S. M. & Lambiase, G. Revealing neutrino nature and CPT violation with decoherence effects. Eur. Phys. J. C 80, 1009 (2020).

    Article  CAS  ADS  Google Scholar 

  42. Guzzo, M. M., de Holanda, P. C. & Oliveira, R. L. N. Quantum dissipation in a neutrino system propagating in vacuum and in matter. Nucl. Phys. B 908, 408–422 (2016).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  43. Gomes, A. L. G., Gomes, R. A. & Peres, O. L. G. Quantum decoherence and relaxation in long-baseline neutrino data. J. High Energ. Phys. 2023, 35 (2023).

    Article  Google Scholar 

  44. Anchordoqui, L. A. et al. Probing Planck scale physics with IceCube. Phys. Rev. D 72, 065019 (2005).

    Article  ADS  Google Scholar 

  45. Klapdor-Kleingrothaus, H., Päs, H. & Sarkar, U. Effects of quantum space time foam in the neutrino sector. Eur. Phys. J. A 8, 577–580 (2000).

    Article  CAS  ADS  Google Scholar 

  46. Lisi, E., Marrone, A. & Montanino, D. Probing possible decoherence effects in atmospheric neutrino oscillations. Phys. Rev. Lett. 85, 1166–1169 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  47. Coloma, P., Lopez-Pavon, J., Martinez-Soler, I. & Nunokawa, H. Decoherence in neutrino propagation through matter, and bounds from IceCube/DeepCore. Eur. Phys. J. C 78, 614 (2018).

    Article  ADS  Google Scholar 

  48. Ellis, J., Mavromatos, N. & Nanopoulos, D. Quantum decoherence in a D-foam background. Mod. Phys. Lett. A 12, 1759–1773 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  49. Ellis, J. R., Mavromatos, N. E., Nanopoulos, D. V. & Winstanley, E. Quantum decoherence in a four-dimensional black hole background. Mod. Phys. Lett. A 12, 243–256 (1997).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  50. Benatti, F. & Floreanini, R. Non-standard neutral kaon dynamics from infinite statistics. Ann. Phys. 273, 58–71 (1999).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  51. Adams, F. C., Kane, G. L., Mbonye, M. & Perry, M. J. Proton decay, black holes, and large extra dimensions. Int. J. Mod. Phys. A 16, 2399–2410 (2001).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  52. Aartsen, M. G. et al. Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube Neutrino Telescope. Phys. Rev. D 102, 052009 (2020).

    Article  CAS  ADS  Google Scholar 

  53. Aartsen, M. G. et al. eV-scale sterile neutrino search using eight years of atmospheric muon neutrino data from the IceCube Neutrino Observatory. Phys. Rev. Lett. 125, 141801 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  54. Abbasi, R. et al. Search for unstable sterile neutrinos with the IceCube Neutrino Observatory. Phys. Rev. Lett. 129, 151801 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  55. Abbasi, R. et al. Strong constraints on neutrino nonstandard interactions from TeV-scale νu disappearance at IceCube. Phys. Rev. Lett. 129, 011804 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  56. Argüelles, C. A., Schneider, A. & Yuan, T. A binned likelihood for stochastic models. J. High Energ. Phys. 06, 030 (2019).

    Article  MathSciNet  ADS  Google Scholar 

  57. Feldman, G. J. & Cousins, R. D. A unified approach to the classical statistical analysis of small signals. Phys. Rev. D 57, 3873–3889 (1998).

    Article  CAS  ADS  Google Scholar 

  58. Ahn, E.-J., Engel, R., Gaisser, T. K., Lipari, P. & Stanev, T. Cosmic ray interaction event generator SIBYLL 2.1. Phys. Rev. D 80, 094003 (2009).

    Article  ADS  Google Scholar 

  59. Riehn, F., Engel, R., Fedynitch, A., Gaisser, T. K. & Stanev, T. Hadronic interaction model SIBYLL 2.3d and extensive air showers. Phys. Rev. D 102, 063002 (2020).

    Article  CAS  ADS  Google Scholar 

  60. Barr, G. D., Gaisser, T. K., Robbins, S. & Stanev, T. Uncertainties in atmospheric neutrino fluxes. Phys. Rev. D 74, 094009 (2006).

    Article  ADS  Google Scholar 

  61. Aartsen, M. G. et al. Characteristics of the diffuse astrophysical electron and tau neutrino flux with six years of IceCube high energy cascade data. Phys. Rev. Lett. 125, 121104 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  62. Abbasi, R. et al. LeptonInjector and LeptonWeighter: a neutrino event generator and weighter for neutrino observatories. Comput. Phys. Commun. 266, 108018 (2021).

    Article  CAS  Google Scholar 

  63. Abbasi, R. et al. Calibration and characterization of the IceCube photomultiplier tube. Nucl. Instrum. Methods Phys. Res., Sect. A 618, 139–152 (2010).

    Article  CAS  ADS  Google Scholar 

  64. Rongen, M. Measuring the optical properties of IceCube drill holes. EPJ Web Conf. 116, 06011 (2016).

    Article  Google Scholar 

  65. Aartsen, M. G. et al. Measurement of South Pole ice transparency with the IceCube LED calibration system. Nucl. Instrum. Methods Phys. Res., Sect. A 711, 73–89 (2013).

    Article  CAS  ADS  Google Scholar 

  66. Aartsen, M. G. et al. Efficient propagation of systematic uncertainties from calibration to analysis with the SnowStorm method in IceCube. JCAP 10, 048 (2019).

    Article  ADS  Google Scholar 

  67. Abbasi, R. et al. In-situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory. The Cryosphere 18, 75–102 (2024).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the following sources, grouped by country. United States: US National Science Foundation, Office of Polar Programs; US National Science Foundation, Physics Division; US National Science Foundation, EPSCoR; US National Science Foundation, Office of Advanced Cyberinfrastructure, Wisconsin Alumni Research Foundation, Center for High Throughput Computing (CHTC) at the University of Wisconsin–Madison; Open Science Grid (OSG), Partnership to Advance Throughput Computing (PATh), Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS), Frontera computing project at the Texas Advanced Computing Center; US Department of Energy, National Energy Research Scientific Computing Center, Particle Astrophysics Research Computing Center at the University of Maryland; Institute for Cyber-Enabled Research at Michigan State University; Astroparticle Physics Computational Facility at Marquette University; NVIDIA Corporation; and Google Cloud Platform. Belgium: Funds for Scientific Research (FRS-FNRS and FWO), FWO Odysseus and Big Science programmes and Belgian Federal Science Policy Office (Belspo). Germany: Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Initiative and Networking Fund of the Helmholtz Association, Deutsches Elektronen Synchrotron (DESY), and High Performance Computing cluster of the RWTH Aachen. Sweden: Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC) and Knut and Alice Wallenberg Foundation. European Union: EGI Advanced Computing for Research. Australia: Australian Research Council. Canada: Natural Sciences and Engineering Research Council of Canada, Calcul Québec, Compute Ontario, Canada Foundation for Innovation, WestGrid and Digital Research Alliance of Canada. Denmark: Villum Fonden, Carlsberg Foundation and European Commission. New Zealand: Marsden Fund. Japan: Japan Society for Promotion of Science (JSPS) and Institute for Global Prominent Research (IGPR) of Chiba University. Korea: National Research Foundation of Korea (NRF). Switzerland: Swiss National Science Foundation (SNSF).

Author information

Authors and Affiliations

Consortia

Contributions

The IceCube Collaboration acknowledges significant contributions to this manuscript by the IceCube groups from the University of Texas at Arlington, the Niels Bohr Institute and Harvard University. The IceCube Collaboration designed, constructed and now operates the IceCube Neutrino Observatory. Data processing and calibration, Monte Carlo simulations of the detector and of the theoretical models, and data analyses were performed by a large number of collaboration members, who also discussed and approved the scientific results presented here.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Ricardo A. Gomes, Atsuko Ichikawa and Giuseppe Gaetano Luciano for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Summary of nuisance parameters used in the analysis

Extended Data Fig. 1 Systematic Pulls for Phase Perturbation (top) and State Selection (bottom).

The pull is defined as the value of the nuisance parameter minus its central value, divided by the Gaussian prior width. Each of the nuisance parameters (outlined in the Methods section) is represented by four color bars, one corresponding to the best fit point under each power law n. Since the best fit point is very close to no decoherence in all power law models, the distributionsof pulls are similar in all cases.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

The IceCube Collaboration. Search for decoherence from quantum gravity with atmospheric neutrinos. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02436-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02436-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing