Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Could quantum gravity slow down neutrinos?

Abstract

In addition to its implications for astrophysics, the hunt for neutrinos originating from gamma-ray bursts could also be significant in quantum-gravity research, as they are excellent probes of the microscopic fabric of spacetime. Some previous studies based on neutrinos observed by the IceCube observatory found intriguing preliminary evidence that some of them might be gamma-ray burst neutrinos whose travel times are affected by quantum properties of spacetime that would slow down some of the neutrinos while speeding up others. The IceCube collaboration recently significantly revised the estimates of the direction of observation of their neutrinos, and we here investigate how the corrected directional information affects the results of the previous quantum-spacetime-inspired analyses. We find that there is now little evidence for neutrinos being sped up by quantum spacetime properties, whereas the evidence for neutrinos being slowed down by quantum spacetime is even stronger than previously determined. Our most conservative estimates find a false-alarm probability of less than 1% for these ‘slow neutrinos’, providing motivation for future studies on larger data samples.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Late GRB-neutrino candidates.
Fig. 2: GRB-neutrino candidates above 60 TeV.

Similar content being viewed by others

Data availability

For the GRBs we used the catalogue that can be found at icecube.wisc.edu/~grbweb_public/Summary_table.html. For neutrinos we used the data reported in ref. 20.

References

  1. Amelino-Camelia, G. Quantum-spacetime phenomenology. Living Rev. Relativ. 16, 5 (2013).

    Article  ADS  Google Scholar 

  2. Jacob, U. & Piran, T. Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced Lorentz violation. Nat. Phys. 3, 87–90 (2007).

    Article  Google Scholar 

  3. Amelino-Camelia, G. & Smolin, L. Prospects for constraining quantum gravity dispersion with near term observations. Phys. Rev. D 80, 084017 (2009).

    Article  ADS  Google Scholar 

  4. Amelino-Camelia, G., Ellis, J., Mavromatos, N. E., Nanopoulos, D. V. & Sarkar, S. Tests of quantum gravity from observations of gamma-ray bursts. Nature 393, 763–765 (1998).

    Article  ADS  Google Scholar 

  5. Gambini, R. & Pullin, J. Nonstandard optics from quantum space-time. Phys. Rev. D 59, 124021 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  6. Alfaro, J., Morales-Tecotl, H. A. & Urrutia, L. F. Quantum gravity corrections to neutrino propagation. Phys. Rev. Lett. 84, 2318–2321 (2000).

    Article  ADS  Google Scholar 

  7. Amelino-Camelia, G. & Majid, S. Waves on noncommutative space-time and gamma-ray bursts. Int. J. Mod. Phys. A 15, 4301–4324 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Myers, R. C. & Pospelov, M. Ultraviolet modifications of dispersion relations in effective field theory. Phys. Rev. Lett. 90, 211601 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Amelino-Camelia, G., Guetta, D. & Piran, T. Icecube neutrinos and Lorentz invariance violation. Astrophys. J. 806, 269 (2015).

    Article  ADS  Google Scholar 

  10. Stecker, F. W., Scully, S. T., Liberati, S. & Mattingly, D. Searching for traces of Planck-scale physics with high energy neutrinos. Phys. Rev. D 91, 045009 (2015).

    Article  ADS  Google Scholar 

  11. Waxman, E. & Bahcall, J. N. High energy neutrinos from cosmological gamma-ray burst fireballs. Phys. Rev. Lett. 78, 2292–2295 (1997).

    Article  ADS  Google Scholar 

  12. Rachen, J. P. & Meszaros, P. Cosmic rays and neutrinos from gamma-ray bursts. AIP Conf. Proc. 428, 776–780 (1997).

    ADS  Google Scholar 

  13. Guetta, D., Hooper, D., Alvarez-Miniz, J., Halzen, F. & Reuveni, E. Neutrinos from individual gamma-ray bursts in the BATSE catalog. Astropart. Phys. 20, 429–455 (2004).

    Article  ADS  Google Scholar 

  14. Ahlers, M., Gonzalez-Garcia, M. C. & Halzen, F. GRBs on probation: testing the UHE CR paradigm with IceCube. Astropart. Phys. 35, 87–94 (2011).

    Article  ADS  Google Scholar 

  15. Amelino-Camelia, G., Barcaroli, L., D’Amico, G., Loret, N. & Rosati, G. IceCube and GRB neutrinos propagating in quantum spacetime. Phys. Lett. B 761, 318–325 (2016).

    Article  ADS  Google Scholar 

  16. Amelino-Camelia, G., Barcaroli, L., D’Amico, G., Loret, N. & Rosati, G. Quantum-gravity-induced dual lensing and IceCube neutrinos. Int. J. Mod. Phys. D 26, 1750076 (2017).

    Article  ADS  Google Scholar 

  17. Amelino-Camelia, G., D’Amico, G., Rosati, G. & Loret, N. In-vacuo-dispersion features for GRB neutrinos and photons. Nat. Astron. 1, 0139 (2017).

    Article  ADS  Google Scholar 

  18. Huang, Y. & Ma, B. Q. Lorentz violation from gamma-ray burst neutrinos. Commun. Phys. 1, 62 (2018).

    Article  Google Scholar 

  19. Huang, Y., Li, H. & Ma, B. Q. Consistent Lorentz violation features from near-TeV IceCube neutrinos. Phys. Rev. D 99, 123018 (2019).

    Article  ADS  Google Scholar 

  20. Abbasi, R. et al. The IceCube high-energy starting event sample: description and flux characterization with 7.5 years of data. Phys. Rev. D 104, 022002 (2021).

    Article  ADS  Google Scholar 

  21. Aghanim, N. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020); erratum 652, C4 (2021).

    Article  Google Scholar 

  22. Wang, K. et al. Limiting superluminal neutrino velocity and Lorentz invariance violation by neutrino emission from the blazar TXS 0506+056. Phys. Rev. D 102, 063027 (2020).

    Article  ADS  Google Scholar 

  23. Aartsen, M. G. et al. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 361, 147–151 (2018).

  24. Mészáros, P. Gamma-ray bursts: theoretical issues and developments. Mem. Soc. Ast. It. 90, 57–66 (2019).

  25. Aartsen, M. G. et al. Energy reconstruction methods in the IceCube neutrino telescope. J. Instrum. 9, P03009 (2014).

    Article  Google Scholar 

  26. Xu, H. & Ma, B. Q. Light speed variation from gamma ray burst GRB 160509A. Phys. Lett. B 760, 602–604 (2016).

  27. Ackermann, M. et al. The radio/gamma-ray connection in active galactic nuclei in the era of the Fermi Large Area Telescope. Astrophys. J. 741, 30 (2011).

    Article  ADS  Google Scholar 

  28. Vasileiou, V. et al. Constraints on Lorentz invariance violation from Fermi-Large Area Telescope observations of gamma-ray bursts. Phys. Rev. D 87, 122001 (2013).

    Article  ADS  Google Scholar 

  29. Acciari, V. A. et al. Bounds on Lorentz invariance violation from MAGIC observation of GRB 190114C. Phys. Rev. Lett. 125, 021301 (2020).

    Article  ADS  Google Scholar 

  30. Fiorentini, G. & Mezzorani, G. Solar neutrinos, sunspot number and the magnetic field in the convective zone. Phys. Lett. B 253, 181–184 (1991).

  31. Ludescher, J. et al. Improved El Niño forecasting by cooperativity detection. Proc. Natl Acad. Sci. USA 110, 11742–11745 (2013).

Download references

Acknowledgements

G.A.-C. and G.G. are grateful for financial support from the Programme STAR Plus, funded by Federico II University and Compagnia di San Paolo, from FQXi grant no. 2018-190483 and from the MIUR under PRIN 2017 grant no. 20179ZF5KS. The work of G.R. on this project was supported by the National Science Centre under grant no. 2019/33/B/ST2/00050. The work of G.D. on this project was supported by the Research Council of Norway under project no. 301718. This work also falls within the scopes of the EU COST action CA18108 ‘Quantum gravity phenomenology in the multi-messenger era’.

Author information

Authors and Affiliations

Authors

Contributions

G.A.-C. proposed the project. All authors contributed to all aspects of the analysis, with G.A.-C., G.G. and G.R. leading the work on pure theory, G.A.-C., G.D. and G.G. leading the work on statistical methods and M.G.D.L., G.G. and G.R. leading the numerical work.

Corresponding author

Correspondence to Giovanni Amelino-Camelia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Anna Pollmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amelino-Camelia, G., Di Luca, M.G., Gubitosi, G. et al. Could quantum gravity slow down neutrinos?. Nat Astron 7, 996–1001 (2023). https://doi.org/10.1038/s41550-023-01993-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-01993-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing