Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vectorial polaritons in the quantum motion of a levitated nanosphere

Abstract

The strong coupling between photons and bosonic excitations in matter produces hybrid quasiparticle states known as polaritons1,2,3. Their signature is the avoided crossing between the eigenfrequencies of the coupled system illustrated by the Jaynes–Cummings Hamiltonian4. It has been observed in quantum electrodynamics experiments based on atoms5,6, ions7, excitons8,9,10, spin ensembles11,12 and superconducting qubits13. In cavity optomechanics, polariton modes originate from the quantum-coherent coupling of a macroscopic mechanical vibration to the cavity radiation field14,15. Here we investigate polaritonic modes in the motion of an optically levitated nanosphere16,17,18,19,20,21,22 in the quantum-coherent coupling regime. The particle is trapped in a high vacuum by an optical tweezer and strongly coupled to a single cavity mode by coherent scattering of the tweezer photons23,24,25,26,27. The two-dimensional motion and optical cavity mode define an optomechanical system with three degrees of freedom. In the strong-coupling regime, we observe hybrid light–mechanical states with a vectorial nature. Our results pave the way towards protocols for quantum information transfer between photonic and phononic components and represent a step towards the demonstration of optomechanical entangled states at room temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental system.
Fig. 2: Polaritonic dynamics.
Fig. 3: Spectra in coherent strong-coupling regimes.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

Codes to analyse the data and perform numeric calculations are available from the corresponding author upon reasonable request.

References

  1. Tolpygo, K. Physical properties of a rock salt lattice made up of deformable ions. Zh. Eksp. Teor. Fiz. 20, 497–509 (1950).

    Google Scholar 

  2. Huang, K. On the interaction between the radiation field and ionic crystals. Proc. R. Soc. Lond. A 208, 352–365 (1951).

    Article  ADS  MATH  Google Scholar 

  3. Hopfield, J. J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 112, 1555–1567 (1958).

    Article  ADS  MATH  Google Scholar 

  4. Jaynes, E. T. & Cummings, F. W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963).

    Article  Google Scholar 

  5. Thompson, R. J., Rempe, G. & Kimble, H. J. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992).

    Article  ADS  Google Scholar 

  6. Colombe, Y. et al. Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature 450, 272–276 (2007).

    Article  ADS  Google Scholar 

  7. Nakamura, N., Kato, D. & Ohtani, S. Evidence for strong configuration mixing in n = 3 excited levels in neonlike ions. Phys. Rev. A 61, 052510 (2000).

    Article  ADS  Google Scholar 

  8. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article  ADS  Google Scholar 

  9. Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article  ADS  Google Scholar 

  10. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  Google Scholar 

  11. Huebl, H. et al. High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. Phys. Rev. Lett. 111, 127003 (2013).

    Article  ADS  Google Scholar 

  12. Tabuchi, Y. et al. Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113, 083603 (2014).

    Article  ADS  Google Scholar 

  13. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  ADS  Google Scholar 

  14. Verhagen, E., Deléglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012).

    Article  ADS  Google Scholar 

  15. Meystre, P. A short walk through quantum optomechanics. Ann. Phys. 525, 215–233 (2013).

    Article  MATH  Google Scholar 

  16. Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970).

    Article  ADS  Google Scholar 

  17. Chang, D. E. et al. Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl Acad. Sci. USA 107, 1005–1010 (2010).

    Article  ADS  Google Scholar 

  18. Barker, P. F. & Shneider, M. N. Cavity cooling of an optically trapped nanoparticle. Phys. Rev. A 81, 023826 (2010).

    Article  ADS  Google Scholar 

  19. Romero-Isart, O., Juan, M. L., Quidant, R. & Cirac, J. I. Toward quantum superposition of living organisms. New J. Phys. 12, 033015 (2010).

    Article  ADS  Google Scholar 

  20. Li, T., Kheifets, S. & Raizen, M. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys. 7, 527–530 (2011).

    Article  Google Scholar 

  21. Gieseler, J., Deutsch, B., Quidant, R. & Novotny, L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012).

    Article  ADS  Google Scholar 

  22. Millen, J., Monteiro, T. S., Pettit, R. & Vamivakas, A. N. Optomechanics with levitated particles. Rep. Prog. Phys. 83, 026401 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  23. Delić, U. et al. Cavity cooling of a levitated nanosphere by coherent scattering. Phys. Rev. Lett. 122, 123602 (2019).

    Article  ADS  Google Scholar 

  24. Windey, D. et al. Cavity-based 3D cooling of a levitated nanoparticle via coherent scattering. Phys. Rev. Lett. 122, 123601 (2019).

    Article  ADS  Google Scholar 

  25. Gonzalez-Ballestero, C. et al. Theory for cavity cooling of levitated nanoparticles via coherent scattering: master equation approach. Phys. Rev. A 100, 013805 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  26. Delić, U. et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science 367, 892–895 (2020).

    Article  ADS  Google Scholar 

  27. de los Ríos Sommer, A., Meyer, N. & Quidant, R. Strong optomechanical coupling at room temperature by coherent scattering. Nat. Commun. 12, 276 (2021).

    Article  Google Scholar 

  28. Gröblacher, S., Hammerer, K., Vanner, M. R. & Aspelmeyer, M. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724–727 (2009).

    Article  ADS  Google Scholar 

  29. Teufel, J. D. et al. Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011).

    Article  ADS  Google Scholar 

  30. Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

    Article  ADS  Google Scholar 

  31. Wollman, E. E. et al. Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Pirkkalainen, J.-M., Damskägg, E., Brandt, M., Massel, F. & Sillanpää, M. A. Squeezing of quantum noise of motion in a micromechanical resonator. Phys. Rev. Lett. 115, 243601 (2015).

    Article  ADS  Google Scholar 

  33. Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007).

    Article  ADS  Google Scholar 

  34. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  ADS  Google Scholar 

  35. Bowen, W. & Milburn, G. J. Quantum Optomechanics (CRC Press, 2015).

  36. Toroš, M. & Monteiro, T. S. Quantum sensing and cooling in three-dimensional levitated cavity optomechanics. Phys. Rev. Res. 2, 023228 (2020).

    Article  Google Scholar 

  37. Toroš, M., Delic, Ucv, Hales, F. & Monteiro, T. S. Coherent-scattering two-dimensional cooling in levitated cavity optomechanics. Phys. Rev. Res. 3, 023071 (2021).

    Article  Google Scholar 

  38. Genes, C., Vitali, D. & Tombesi, P. Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity. New J. Phys. 10, 095009 (2008).

    Article  ADS  Google Scholar 

  39. Massel, F. et al. Multimode circuit optomechanics near the quantum limit. Nat. Commun. 3, 987 (2012).

    Article  ADS  Google Scholar 

  40. Shkarin, A. B. et al. Optically mediated hybridization between two mechanical modes. Phys. Rev. Lett. 112, 013602 (2014).

    Article  ADS  Google Scholar 

  41. Sun, G. et al. Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system. Nat. Commun. 1, 51 (2010).

    Article  ADS  Google Scholar 

  42. Altomare, F. et al. Tripartite interactions between two phase qubits and a resonant cavity. Nat. Phys. 6, 777–781 (2010).

    Article  Google Scholar 

  43. Fink, J. M. et al. Dressed collective qubit states and the Tavis-Cummings model in circuit QED. Phys. Rev. Lett. 103, 083601 (2009).

    Article  ADS  Google Scholar 

  44. Jain, V. et al. Direct measurement of photon recoil from a levitated nanoparticle. Phys. Rev. Lett. 116, 243601 (2016).

    Article  ADS  Google Scholar 

  45. Seberson, T. & Robicheaux, F. Distribution of laser shot-noise energy delivered to a levitated nanoparticle. Phys. Rev. A 102, 033505 (2020).

    Article  ADS  Google Scholar 

  46. Petta, J. R., Lu, H. & Gossard, A. C. A coherent beam splitter for electronic spin states. Science 327, 669–672 (2010).

    Article  ADS  Google Scholar 

  47. Tan, S. M., Walls, D. F. & Collett, M. J. Nonlocality of a single photon. Phys. Rev. Lett. 66, 252–255 (1991).

    Article  ADS  Google Scholar 

  48. Kim, M. S., Son, W., Bužek, V. & Knight, P. L. Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement. Phys. Rev. A 65, 032323 (2002).

    Article  ADS  Google Scholar 

  49. Wang, X.-L. et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015).

    Article  ADS  Google Scholar 

  50. Liu, Y.-C., Xiao, Y.-F., Chen, Y.-L., Yu, X.-C. & Gong, Q. Parametric down-conversion and polariton pair generation in optomechanical systems. Phys. Rev. Lett. 111, 083601 (2013).

    Article  ADS  Google Scholar 

  51. Lemonde, M.-A., Didier, N. & Clerk, A. A. Nonlinear interaction effects in a strongly driven optomechanical cavity. Phys. Rev. Lett. 111, 053602 (2013).

    Article  ADS  Google Scholar 

  52. Børkje, K., Nunnenkamp, A., Teufel, J. D. & Girvin, S. M. Signatures of nonlinear cavity optomechanics in the weak coupling regime. Phys. Rev. Lett. 111, 053603 (2013).

    Article  ADS  Google Scholar 

  53. Mestres, P. et al. Cooling and manipulation of a levitated nanoparticle with an optical fiber trap. Appl. Phys. Lett. 107, 151102 (2015).

    Article  ADS  Google Scholar 

  54. Calamai, M., Ranfagni, A. & Marin, F. Transfer of a levitating nanoparticle between optical tweezers. AIP Adv. 11, 025246 (2021).

    Article  ADS  Google Scholar 

  55. Novotny, L. & Hecht, B. Principles of Nano-Optics 2nd edn (Cambridge Univ. Press, 2012).

Download references

Acknowledgements

F. Marin and P.V. thank N. Kiesel, U. Delic and M. Aspelmeyer for useful discussions and their kind hospitality. Research performed within the Project QuaSeRT funded by the QuantERA ERA-NET Cofund in Quantum Technologies implemented within the European Union’s Horizon 2020 Programme.

Author information

Authors and Affiliations

Authors

Contributions

F. Marin conceived the experiment. All the authors constructed the setup. A.R., P.V., F. Marino and F. Marin performed the experiment and analysed the data. F. Marino and F. Marin wrote the manuscript.

Corresponding author

Correspondence to F. Marin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Physics thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Discussion (theoretical model, experimental setup, noise spectra and data analysis) and refs. 1–11.

Source data

Source Data Fig. 1

Source data for Fig. 1b (a two-column file).

Source Data Fig. 2

Source data for Fig. 2 (a text file and a two-column file for each curve in the figure).

Source Data Fig. 3

Source data for Fig. 3 (a text file and a two-column file for each curve appearing in the figure (except for fig3a_data.txt, which has three columns for x, y and y-error)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranfagni, A., Vezio, P., Calamai, M. et al. Vectorial polaritons in the quantum motion of a levitated nanosphere. Nat. Phys. 17, 1120–1124 (2021). https://doi.org/10.1038/s41567-021-01307-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01307-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing