Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A Purcell-enabled monolayer semiconductor free-space optical modulator

Abstract

Dephasing and non-radiative decay processes limit the performance of a wide variety of quantum devices at room temperature. Here we illustrate a general pathway to notably reduce the detrimental impact of these undesired effects through photonic design of the device electrodes. Our design facilitates a large Purcell enhancement that speeds up competing, desired radiative decay while also enabling convenient electrical gating and charge injection functions. We demonstrate the concept with a free-space optical modulator based on an atomically thin semiconductor. By engineering the plasmonic response of a nanopatterned silver gate pad, we successfully enhance the radiative decay rate of excitons in a tungsten disulfide monolayer by one order of magnitude to create record-high modulation efficiencies for this class of materials at room temperature. We experimentally observe a 10% reflectance change as well as 3 dB signal modulation, corresponding to a 20-fold enhancement compared with modulation using a suspended monolayer in vacuum. We also illustrate how dynamic control of light fields can be achieved with designer surface patterns. This research highlights the benefits of applying radiative decay engineering as a powerful tool in creating high-performance devices that complements substantial efforts to improve the quality of materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Monolayer WS2 free-space optical modulator.
Fig. 2: Enhanced modulation with an silver metasurface gate pad.
Fig. 3: Intensity modulation of the reflected beam via electrical gating.
Fig. 4: Monolayer WS2 light-field modulators with a beam-steering function.

Similar content being viewed by others

Data availability

All key data that support the findings of this study are included in the article and its Supplementary Information. Further datasets and raw measurements are available from the corresponding author on reasonable request.

References

  1. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  2. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

    Article  ADS  Google Scholar 

  3. Lien, D.-H. et al. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 364, 468–471 (2019).

    Article  ADS  Google Scholar 

  4. Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013).

    Article  ADS  Google Scholar 

  5. Das, S. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021).

    Article  Google Scholar 

  6. Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).

    Article  ADS  Google Scholar 

  7. Ye, Y. et al. Monolayer excitonic laser. Nat. Photon. 9, 733–737 (2015).

    Article  ADS  Google Scholar 

  8. Wilson, N. P., Yao, W., Shan, J. & Xu, X. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 599, 383–392 (2021).

    Article  ADS  Google Scholar 

  9. Chernikov, A. et al. Electrical tuning of exciton binding energies in monolayer WS2. Phys. Rev. Lett. 115, 126802 (2015).

    Article  ADS  Google Scholar 

  10. Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).

    Article  ADS  Google Scholar 

  11. Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251 (2017).

    Article  ADS  Google Scholar 

  12. Castellanos-Gomez, A. et al. Local strain engineering in atomically thin MoS2. Nano Lett. 13, 5361–5366 (2013).

    Article  ADS  Google Scholar 

  13. Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014).

    Article  ADS  Google Scholar 

  14. Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    Article  ADS  Google Scholar 

  15. Yu, Y. et al. Giant gating tunability of optical refractive index in transition metal dichalcogenide monolayers. Nano Lett. 17, 3613–3618 (2017).

    Article  ADS  Google Scholar 

  16. Datta, I. et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat. Photon. 14, 256–262 (2020).

    Article  ADS  Google Scholar 

  17. van de Groep, J. et al. Exciton resonance tuning of an atomically thin lens. Nat. Photon. 14, 426–430 (2020).

    Article  ADS  Google Scholar 

  18. Biswas, S., Grajower, M. Y., Watanabe, K., Taniguchi, T. & Atwater, H. A. Broadband electro-optic polarization conversion with atomically thin black phosphorus. Science 374, 448–453 (2021).

    Article  ADS  Google Scholar 

  19. Willner, A. E. et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photon. 7, 66–106 (2015).

    Article  Google Scholar 

  20. Schwarz, B. Mapping the world in 3D. Nat. Photon. 4, 429–430 (2010).

    Article  ADS  Google Scholar 

  21. Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 160–163 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    Article  ADS  Google Scholar 

  24. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

    Article  ADS  Google Scholar 

  25. Back, P., Zeytinoglu, S., Ijaz, A., Kroner, M. & Imamoğlu, A. Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe2. Phys. Rev. Lett. 120, 037401 (2018).

    Article  ADS  Google Scholar 

  26. Scuri, G. et al. Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride. Phys. Rev. Lett. 120, 037402 (2018).

    Article  ADS  Google Scholar 

  27. Li, M., Biswas, S., Hail, C. U. & Atwater, H. A. Refractive index modulation in monolayer molybdenum diselenide. Nano Lett. 21, 7602–7608 (2021).

    Article  ADS  Google Scholar 

  28. Epstein, I. et al. Near-unity light absorption in a monolayer WS2 Van der Waals heterostructure cavity. Nano Lett. 20, 3545–3552 (2020).

    Article  ADS  Google Scholar 

  29. Selig, M. et al. Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides. Nat. Commun. 7, 13279 (2016).

    Article  ADS  Google Scholar 

  30. Sönnichsen, C. et al. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88, 077402 (2002).

    Article  ADS  Google Scholar 

  31. Dahmen, C., Schmidt, B. & von Plessen, G. Radiation damping in metal nanoparticle pairs. Nano Lett. 7, 318–322 (2007).

    Article  ADS  Google Scholar 

  32. Lamprecht, B. et al. Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance. Phys. Rev. Lett. 84, 4721–4724 (2000).

    Article  ADS  Google Scholar 

  33. Bogdanov, S. I., Boltasseva, A. & Shalaev, V. M. Overcoming quantum decoherence with plasmonics. Science 364, 532–533 (2019).

    Article  ADS  Google Scholar 

  34. Grange, T. et al. Reducing phonon-induced decoherence in solid-state single-photon sources with cavity quantum electrodynamics. Phys. Rev. Lett. 118, 253602 (2017).

    Article  ADS  Google Scholar 

  35. Horng, J. et al. Engineering radiative coupling of excitons in 2D semiconductors. Optica 6, 1443–1448 (2019).

    Article  Google Scholar 

  36. Purcell, E. M. Spontaneous emission probabliities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Google Scholar 

  37. Hooper, I. R. & Sambles, J. R. Dispersion of surface plasmon polaritons on short-pitch metal gratings. Phys. Rev. B 65, 1–9 (2002).

    Article  Google Scholar 

  38. Chen, P. et al. Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes. Nature 599, 404–410 (2021).

    Article  ADS  Google Scholar 

  39. Fan, S., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20, 569 (2003).

    Article  ADS  Google Scholar 

  40. Chaves, A. et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl. 4, 29 (2020).

    Article  MathSciNet  Google Scholar 

  41. Liu, F. et al. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 367, 903–906 (2020).

    Article  ADS  Google Scholar 

  42. Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).

    Article  ADS  Google Scholar 

  43. Daus, A. et al. High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat. Electron. 4, 495–501 (2021).

    Article  Google Scholar 

  44. McClellan, C. J., Yalon, E., Smithe, K. K. H., Suryavanshi, S. V. & Pop, E. High current density in monolayer MoS2 doped by AlOx. ACS Nano 15, 1587–1596 (2021).

    Article  Google Scholar 

  45. McDonnell, S. et al. HfO2 on MoS2 by atomic layer deposition: adsorption mechanisms and thickness scalability. ACS Nano 7, 10354–10361 (2013).

    Article  Google Scholar 

  46. Morozov, S., Wolff, C. & Mortensen, N. A. Room‐temperature low‐voltage control of excitonic emission in transition metal dichalcogenide monolayers. Adv. Opt. Mater. 9, 2101305 (2021).

    Article  Google Scholar 

  47. Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    Article  ADS  Google Scholar 

  48. Andersen, T. I. et al. Beam steering at the nanosecond time scale with an atomically thin reflector. Nat. Commun. 13, 3431 (2022).

    Article  ADS  Google Scholar 

  49. Park, J., Kang, J.-H., Kim, S. J., Liu, X. & Brongersma, M. L. Dynamic reflection phase and polarization control in metasurfaces. Nano Lett. 17, 407–413 (2017).

    Article  ADS  Google Scholar 

  50. van de Groep, J., Li, Q., Song, J.-H., Kik, P. G. & Brongersma, M. L. Impact of substrates and quantum effects on exciton line shapes of 2D semiconductors at room temperature. Nanophotonics https://doi.org/10.1515/nanoph-2023-0193 (2023).

Download references

Acknowledgements

We would like to acknowledge funding from an AFOSR MURI grant (grant no. FA9550-17-1-0002) and the US Department of Energy (grant no. DE-FG07-ER46426).

Author information

Authors and Affiliations

Authors

Contributions

Q.L. and M.L.B. conceived the research idea. Q.L. built the model, performed the design and fabrication of optical modulators with input from J.v.d.G. Q.L., J.-H.S. and F.X. performed the experimental characterization of the optical modulators. A.C.J. and F.L. prepared monolayer WS2 samples. J.H. performed wire-bonding for electrical characterization. A.D. and E.P. helped with atomic layer deposition. Y.J.L. helped with photoluminescence measurement. M.L.B. supervised the project. All of the authors contributed to writing the manuscript.

Corresponding author

Correspondence to Mark L. Brongersma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Alex Krasnok and Zongfu Yu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3 and Figs. 1–19.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Song, JH., Xu, F. et al. A Purcell-enabled monolayer semiconductor free-space optical modulator. Nat. Photon. 17, 897–903 (2023). https://doi.org/10.1038/s41566-023-01250-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01250-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing