Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5–10 THz band

Abstract

Broadband and efficient terahertz absorbing films are crucial to high-performance terahertz detectors, which are in demand for next-generation wireless communications, astronomy, security screening, medical imaging and so on. Recent studies reported a series of two-dimensional materials for enhanced light absorption in terahertz waves, such as graphene, transition metal dichalcogenides and topological insulators, among others. However, it is still challenging to achieve the intrinsic thin-film absorption limit (50%) across the whole ultrabroad terahertz band. Here we demonstrate that ultrathin 10.2-nm-thick (~λ/30,000) Ti3C2Tx MXene assemblies can reach the intrinsic thin-film absorption limit across the entire 0.5–10 THz band. Such intriguing phenomena are attributed to the highly concentrated free electrons (~1021 cm−3), short relaxation time (~10 fs) and unique intra- and interflake (hopping) electron transport properties in Ti3C2Tx MXenes. Our results are validated by alternating current impedance theory using the Drude–Smith model, rather than classic direct current impedance matching. We believe that our findings will stimulate more studies of broadband terahertz technologies with MXenes and beyond, providing a route to developing compact, supercontinuum terahertz optoelectronic or photothermoelectric devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication, characterization and absorption measurements of Ti3C2Tx MXene assemblies.
Fig. 2: Terahertz absorption and conductivity of Ti3C2Tx MXene assemblies.
Fig. 3: Mechanism of ultrabroadband terahertz absorption in Ti3C2Tx assemblies.

Similar content being viewed by others

Data availability

The experimental dataset and its analysis are provided within the article and its Supplementary Information, and the data are available from the corresponding authors upon reasonable request.

References

  1. Rogalski, A., Kopytko, M. & Martyniuk, P. 2D material infrared and terahertz detectors: status and outlook. Opto-Electron. Rev. 28, 107–154 (2020).

    Google Scholar 

  2. Lin, H. et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photon. 13, 270–276 (2019).

    Article  ADS  Google Scholar 

  3. Alves, F., Karamitros, A., Grbovic, D., Kearney, B. & Karunasiri, G. Highly absorbing nano-scale metal films for terahertz applications. Opt. Eng. 51, 063801 (2012).

    Article  ADS  Google Scholar 

  4. Oda, N. Uncooled bolometer-type terahertz focal plane array and camera for real-time imaging. C. R. Phys. 11, 496–509 (2010).

    Article  ADS  Google Scholar 

  5. Pham, P. H. et al. Broadband impedance match to two-dimensional materials in the terahertz domain. Nat. Commun. 8, 2233 (2017).

    Article  ADS  Google Scholar 

  6. Yao, B. et al. Broadband gate-tunable terahertz plasmons in graphene heterostructures. Nat. Photon. 12, 22–28 (2018).

    Article  ADS  Google Scholar 

  7. Xia, F. et al. Two-dimensional material nanophotonics. Nat. Photon. 8, 899–907 (2014).

    Article  ADS  Google Scholar 

  8. Li, D. et al. Ultrafast dynamics of defect-assisted auger process in PdSe2 films: synergistic interaction between defect trapping and auger effect. J. Phys. Chem. Lett. 13, 2757–2764 (2022).

    Article  Google Scholar 

  9. Wu, L. et al. A sudden collapse in the transport lifetime across the topological phase transition in (Bi1−xInx)2Se3. Nat. Phys. 9, 410–414 (2013).

    Article  Google Scholar 

  10. Di Pietro, P. et al. Observation of Dirac plasmons in a topological insulator. Nat. Nanotechnol. 8, 556–560 (2013).

    Article  ADS  Google Scholar 

  11. Suo, P. et al. Observation of negative terahertz photoconductivity in large area type-II Dirac semimetal PtTe2. Phys. Rev. Lett. 126, 227402 (2021).

    Article  ADS  Google Scholar 

  12. Dai, Z. et al. High mobility 3D Dirac semimetal (Cd3As2) for ultrafast photoactive terahertz photonics. Adv. Funct. Mater. 31, 2011011 (2021).

    Article  MathSciNet  Google Scholar 

  13. Chanana, A. et al. Manifestation of kinetic inductance in terahertz plasmon resonances in thin-film Cd3As2. ACS Nano 13, 4091–4100 (2019).

    Article  Google Scholar 

  14. Hadley, L. N. & Dennison, D. Reflection and transmission interference filters part I. Theory. J. Opt. Soc. Am. 37, 451–465 (1947).

    Article  ADS  Google Scholar 

  15. Hadley, L. N. & Dennison, D. M. Reflection and transmission interference filters part II. Experimental, comparison with theory, results. J. Opt. Soc. Am. 38, 483–496 (1948).

    Article  ADS  Google Scholar 

  16. Hilsum, C. Infrared absorption of thin metal films at non-normal incidence. J. Opt. Soc. Am. 45, 135–136 (1955).

    Article  Google Scholar 

  17. Patterson, J. D., Bailey, B. C. & Harrison, W. Solid-state physics: introduction to the theory. Phys. Today 61, 59 (2008).

    ADS  Google Scholar 

  18. Liang, G. et al. Integrated terahertz graphene modulator with 100% modulation depth. ACS Photon. 2, 1559–1566 (2015).

    Article  Google Scholar 

  19. Mics, Z. et al. Thermodynamic picture of ultrafast charge transport in graphene. Nat. Commun. 6, 7655 (2015).

    Article  ADS  Google Scholar 

  20. Ghidiu, M., Lukatskaya, M. R., Zhao, M. Q., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014).

    Article  ADS  Google Scholar 

  21. Kamysbayev, V. et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020).

    Article  ADS  Google Scholar 

  22. Natu, V. et al. Effect of base/nucleophile treatment on interlayer ion intercalation, surface terminations, and osmotic swelling of Ti3C2Tz MXene multilayers. Chem. Mater. 34, 678–693 (2022).

    Article  Google Scholar 

  23. Mohammadi, A. V., Rosen, J. & Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021).

    Article  Google Scholar 

  24. Naguib, M., Mochalin, V. N., Barsoum, M. W. & Gogotsi, Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014).

    Article  Google Scholar 

  25. Shahzad, F. et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016).

    Article  ADS  Google Scholar 

  26. Miranda, A., Halim, J., Barsoum, M. W. & Lorke, A. Electronic properties of freestanding Ti3C2Tx MXene monolayers. Appl. Phys. Lett. 108, 033102 (2016).

    Article  ADS  Google Scholar 

  27. Li, G. J. et al. Equilibrium and non-equilibrium free carrier dynamics in 2D Ti3C2Tx MXenes: THz spectroscopy study. 2D Mater. 5, 035043 (2018).

    Article  Google Scholar 

  28. Li, S. J., Xu, S. J., Pan, K. C., Du, J. & Qiu, J. Ultra-thin broadband terahertz absorption and electromagnetic shielding properties of MXene/rGO composite film. Carbon 194, 127–139 (2022).

    Article  Google Scholar 

  29. Lin, Z. H. et al. Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano 14, 2109–2117 (2020).

    Article  Google Scholar 

  30. Shui, W. et al. Ti3C2Tx MXene sponge composite as broadband terahertz absorber. Adv. Opt. Mater. 8, 2001120 (2020).

    Article  Google Scholar 

  31. Xiao, X., Wang, H., Urbankowski, P. & Gogotsi, Y. Topochemical synthesis of 2D materials. Chem. Soc. Rev. 47, 8744–8765 (2018).

    Article  Google Scholar 

  32. Karpowicz, N. et al. Coherent heterodyne time-domain spectrometry covering the entire ‘terahertz gap’. Appl. Phys. Lett. 92, 011131 (2008).

    Article  ADS  Google Scholar 

  33. Cocker, T. L. et al. Microscopic origin of the Drude-Smith model. Phys. Rev. B 96, 205439 (2017).

    Article  ADS  Google Scholar 

  34. Zheng, W. H. et al. Band transport by large Frohlich polarons in MXenes. Nat. Phys. 18, 544–550 (2022).

    Article  Google Scholar 

  35. Slobodkin, Y. et al. Massively degenerate coherent perfect absorber for arbitrary wavefronts. Science 377, 995–998 (2022).

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (grant numbers 2017YFA0701000 and 2020YFA0714001), the Natural Science Foundation of China (grant numbers 61988102, 61921002, 62071108 and 62235004), the Outstanding Scholarship Foundation of UESTC (grant number A1098531023601243), the Sichuan Science and Technology Support Program (grant number 2021JDTD0026), the Natural Science Foundation of Sichuan Province (grant numbers 2022NSFSC0513, 2022NSFSC0514, 2023NSFC0437 and 2023NSFSC0437), the Fundamental Research Funds for the Central Universities (grant numbers ZYGX2020ZB007 and ZYGX2020J003), the fund of Key Laboratory of THz Technology, Ministry of Education, China, the Science and Engineering Research Council of A*STAR (Agency for Science, Technology and Research) Singapore (grant number M22L1b0110) and the NRF, Prime Minister’s Office, Singapore, under the Competitive Research Program Award (grant number NRF-CRP26-2021-0063). We thank W. Xie, S. Ding and L. Cheng for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

X.X. and C.-W.Q. supervised the work. T.Z., P.X., H.W. and T.D. fabricated the samples and performed the measurements. E.L., X.C. and T.W. performed the air plasma-based THz-TDS measurements. T.Z., P.X., H.W., T.D., C.-W.Q. and X.X. analysed the data with the help of J.X., Q.Z., Y.W., Y.G., Q.W. and M.H. T.Z., M.L., C.-W.Q. and X.X. wrote the paper with input from all co-authors.

Corresponding authors

Correspondence to Cheng-Wei Qiu or Xu Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24, Tables 1–3, Methods and References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Xie, P., Wan, H. et al. Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5–10 THz band. Nat. Photon. 17, 622–628 (2023). https://doi.org/10.1038/s41566-023-01197-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01197-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing