Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamics of the Berezinskii–Kosterlitz–Thouless transition in a photon fluid

Abstract

In addition to enhancing confinement, restricting optical systems to two dimensions gives rise to new photonic states, modified transport and distinct nonlinear effects. Here we explore these properties in combination and experimentally demonstrate a Berezinskii–Kosterlitz–Thouless phase transition in a nonlinear photonic lattice. In this topological transition, vortices are created in pairs and then unbind, changing the dynamics from that of a photonic fluid to that of a plasma-like gas of free (topological) charges. We explicitly measure the number and correlation properties of free vortices, for both repulsive and attractive interactions (the photonic equivalent of ferromagnetic and antiferromagnetic conditions), and confirm the traditional thermodynamics of the Berezinskii–Kosterlitz–Thouless transition. We also suggest a purely fluid interpretation, in which vortices are nucleated by inhomogeneous flow and driven by seeded instability. The results are fundamental to optical hydrodynamics and can impact two-dimensional photonic devices if temperature and interactions are not controlled properly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BKT transition in a nonlinear optical beam.
Fig. 2: Experimental set-up.
Fig. 3: Behaviour of the radial correlation function.
Fig. 4: Direct measurement of vortex number and correlation function.
Fig. 5: Lattice behaviour of the photonic BKT transition.
Fig. 6: Interpretations of lattice dynamics.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Hohenberg, P. C. Existence of long-range order in one and two dimensions. Phys. Rev. 158, 383–386 (1967).

    ADS  Google Scholar 

  2. Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1977).

    ADS  Google Scholar 

  3. Berezinskii, V. L. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group 1. Classical systems. Sov. Phys. JETP USSR 32, 493–500 (1971).

    ADS  MathSciNet  Google Scholar 

  4. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).

    ADS  Google Scholar 

  5. Ketterle, W. & van Druten, N. J. Bose-Einstein condensation of a finite number of particles trapped in one or three dimensions. Phys. Rev. A 54, 656–660 (1996).

    ADS  Google Scholar 

  6. Hadzibabic, Z., Krueger, P., Cheneau, M., Battelier, B. & Dalibard, J. Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas. Nature 44, 1118–1121 (2006).

    ADS  Google Scholar 

  7. Bishop, D. J. & Reppy, J. D. Study of the superfluid transition in two-dimensional 4He films. Phys. Rev. Lett. 40, 1727–1730 (1978).

    ADS  Google Scholar 

  8. Resnick, D. J., Garland, J. C., Boyd, J. T., Shoemaker, S. & Newrock, R. S. Kosterlitz-Thouless transition in proximity-coupled superconducting arrays. Phys. Rev. Lett. 47, 1542–1545 (1981).

    ADS  Google Scholar 

  9. Roumpos, G. et al. Power-law decay of the spatial correlation function in exciton-polariton condensates. Proc. Natl Acad. Sci. USA 109, 6467–6472 (2012).

    ADS  Google Scholar 

  10. Aranson, I. S., Chaté, H. & Tang, L.-H. Spiral motion in a noisy complex Ginzburg-Landau equation. Phys. Rev. Lett. 80, 2646–2649 (1998).

    ADS  Google Scholar 

  11. Huepe, C., Riecke, H., Daniels, K. E. & Bodenschatz, E. Statistics of defect trajectories in spatio-temporal chaos in inclined layer convection and the complex Ginzburg–Landau equation. Chaos 14, 864–874 (2004).

    ADS  Google Scholar 

  12. Small, E., Pugatch, R. & Silberberg, Y. Berezinskii-Kosterlitz-Thouless crossover in a photonic lattice. Phys. Rev. A 83, 013806 (2011).

    ADS  Google Scholar 

  13. Dagvadorj, G. et al. Nonequilibrium phase transition in a two-dimensional driven open quantum system. Phys. Rev. X 5, 041028 (2015).

    Google Scholar 

  14. Nazarenko, S., Onorato, M. & Proment, D. Bose-Einstein condensation and Berezinskii-Kosterlitz-Thouless transition in the two-dimensional nonlinear Schrödinger model. Phys. Rev. A 90, 013624 (2014).

    ADS  Google Scholar 

  15. Carusotto, I. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    ADS  Google Scholar 

  16. Sun, C., Waller, L., Dylov, D. V. & Fleischer, J. W. Spectral dynamics of spatially incoherent modulation instability. Phys. Rev. Lett. 108, 263902 (2012).

    ADS  Google Scholar 

  17. Fleischer, J. W., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003).

    ADS  Google Scholar 

  18. Wan, W., Jia, S. & Fleischer, J. W. Dispersive superfluid-like shock waves in nonlinear optics. Nat. Phys. 3, 46–51 (2007).

    Google Scholar 

  19. Jia, S., Haataja, M. & Fleischer, J. W. Rayleigh–Taylor instability in nonlinear Schrödinger flow. New. J. Phys. 14, 075009 (2012).

    ADS  Google Scholar 

  20. Sun, C. et al. Observation of the kinetic condensation of classical waves. Nat. Phys. 8, 471–475 (2012).

    Google Scholar 

  21. Klaers, J., Vewinger, F. & Weitz, M. Thermalization of a two-dimensional photonic gas in a ‘white wall’ photon box. Nat. Phys. 6, 512–515 (2010).

    Google Scholar 

  22. Šantić, N. et al. Nonequilibrium precondensation of classical waves in two dimensions propagating through atomic vapors. Phys. Rev. Lett. 120, 055301 (2018).

    ADS  Google Scholar 

  23. Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. Bose-Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).

    ADS  Google Scholar 

  24. Aranson, I. S. & Kramer, L. The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys. 74, 99–143 (2002).

    ADS  MathSciNet  MATH  Google Scholar 

  25. Coullet, P., Gil, L. & Rocca, F. Optical vortices. Opt. Commun. 73, 403–408 (1989).

    ADS  Google Scholar 

  26. Gibson, C. J., Yao, A. M. & Oppo, G.-L. Optical rogue waves in vortex turbulence. Phys. Rev. Lett. 116, 043903 (2016).

    ADS  Google Scholar 

  27. Christodoulides, D. N. & Joseph, R. I. Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt. Lett. 13, 794–796 (1988).

    ADS  Google Scholar 

  28. Rasmussen, K. Ø., Cretegny, T., Kevrekidis, P. G. & Grønbech-Jensen, N. Statistical mechanics of a discrete nonlinear system. Phys. Rev. Lett. 84, 3740–3743 (2000).

    ADS  Google Scholar 

  29. Silberberg, Y., Lahini, Y., Bromberg, Y., Small, E. & Morandotti, R. Universal correlations in a nonlinear periodic 1D system. Phys. Rev. Lett. 102, 233904 (2009).

    ADS  Google Scholar 

  30. Rumpf, B. Transition behavior of the discrete nonlinear Schrödinger equation. Phys. Rev. E 77, 036606 (2008).

    ADS  Google Scholar 

  31. Lopes, R. J. C. & Moura, A. R. Possible extinction of Berezinskii–Kosterlitz–Thouless transition by diagonal interactions in the checkerboard lattice. Phys. Lett. A 382, 1492–1498 (2018).

    ADS  Google Scholar 

  32. Fleischer, J. W. et al. Observation of vortex-ring “discrete” solitons in 2D photonic lattices. Phys. Rev. Lett. 92, 123904 (2004).

    ADS  Google Scholar 

  33. Michel, C., Boughdad, O., Albert, M., Larré, P.-É. & Bellec, M. Superfluid motion and drag-force cancellation in a fluid of light. Nat. Commun. 9, 2108 (2018).

    ADS  Google Scholar 

  34. Trombettoni, A., Smerzi, A. & Sodano, P. Observable signature of the Berezinskii–Kosterlitz–Thouless transition in a planar lattice of Bose–Einstein condensates. New J. Phys. 7, 57 (2005).

    ADS  Google Scholar 

  35. Mizukami, Y. et al. Extremely strong-coupling superconductivity in artificial two-dimensional Kondo lattices. Nat. Phys. 7, 849–853 (2011).

    Google Scholar 

  36. Chaikin, P. R. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge Univ. Press, 1995).

  37. Polkovnikov, A., Altman, E. & Demler, E. Interference between independent fluctuating condensates. Proc. Natl Acad. Sci. USA 103, 6125–6129 (2006).

    ADS  Google Scholar 

  38. Nelson, D. R. & Kosterlitz, J. M. Universal jump in the superfluid density of two-dimensional superfluids. Phys. Rev. Lett. 39, 1201–1204 (1977).

    ADS  Google Scholar 

  39. Bramwell, S. T. & Holdsworth, P. C. W. Magnetization: a characteristic of the Kosterlitz-Thouless-Berezinskii transition. Phys. Rev. B 49, 8811–8814 (1994).

    ADS  Google Scholar 

  40. Fleischer, J. W. et al. Spatial photonics in nonlinear waveguide arrays. Opt. Express 13, 1780–1796 (2005).

    ADS  Google Scholar 

  41. Pushkarev, A. N. & Zakharov, V. E. Turbulence of capillary waves—theory and numerical simulation. Physica D 135, 98–116 (2000).

    ADS  MathSciNet  MATH  Google Scholar 

  42. Chiao, R. Y. & Boyce, J. Bogoliubov dispersion relation and the possibility of superfluidity for weakly interacting photons in a two-dimensional photon fluid. Phys. Rev. A 60, 4114–4121 (1999).

    ADS  Google Scholar 

  43. Jia, S., Wan, W. & Fleischer, J. W. Forward four-wave mixing with defocusing nonlinearity. Opt. Lett. 32, 1668–1670 (2007).

    ADS  Google Scholar 

  44. Guillamon, I. et al. Enhancement of long-range correlations in a 2D vortex lattice by an incommensurate 1D disorder potential. Nat. Phys. 10, 851–856 (2014).

    Google Scholar 

  45. Parker, N. G., Proukakis, N. P., Barenghi, C. F. & Adams, C. S. Dynamical instability of a dark soliton in a quasi-one-dimensional Bose–Einstein condensate perturbed by an optical lattice. J. Phys. B 37, S175–S185 (2004).

    ADS  Google Scholar 

  46. Iga, K. Surface-emitting laser—its birth and generation of new optoelectronics field. IEEE J. Sel. Top. Quantum Electron. 6, 1201–1215 (2000).

    ADS  Google Scholar 

  47. Xia, F., Wang, H., Dubey, M. & Ramasubramanian, A. Two-dimensional material nanophotonics. Nat. Photon. 8, 899–907 (2014).

    ADS  Google Scholar 

  48. Rivera, N., Kaminer, I., Zhen, B., Joannopoulos, J. D. & Soljacic, M. Shrinking light to allow forbidden transitions on the atomic scale. Science 353, 263–269 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  49. Freedman, B. et al. Wave and defect dynamics in nonlinear photonic quasicrystals. Nature 440, 1166–1169 (2006).

    ADS  Google Scholar 

  50. Jia, S. & Fleischer, J. W. Nonlinear light propagation in rotating waveguide arrays. Phys. Rev. A 79, 041804(R) (2009).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research (grants FA9550-12-1-0054 and FA9550-14-1-0177), the Chinese Academy of Sciences (grant QYZDB-SSW-JSC002) and Sino-German Center for Sino-German Cooperation Group (grant GZ 1391).

Author information

Authors and Affiliations

Authors

Contributions

G.S. and J.W.F. conceived and designed the experiments. G.S. performed the experiments and simulations. G.S. and J.W.F. analysed the data and contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Guohai Situ or Jason W. Fleischer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion and Figs. 1–3.

Supplementary Data

Correlation parameter as a function of Ω.

Source data

Source Data Fig. 3

Raw data for radial correlation function.

Source Data Fig. 4

Raw data for vortex number and correlation function.

Source Data Fig. 5

Raw data for lattice behaviour and power spectra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Situ, G., Fleischer, J.W. Dynamics of the Berezinskii–Kosterlitz–Thouless transition in a photon fluid. Nat. Photonics 14, 517–522 (2020). https://doi.org/10.1038/s41566-020-0636-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-0636-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing