Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomic-force-microscopy-based time-domain two-dimensional infrared nanospectroscopy

Abstract

For decades, infrared (IR) spectroscopy has advanced on two distinct frontiers: enhancing spatial resolution and broadening spectroscopic information. Although atomic force microscopy (AFM)-based IR microscopy overcomes Abbe’s diffraction limit and reaches sub-10 nm spatial resolutions, time-domain two-dimensional IR spectroscopy (2DIR) provides insights into molecular structures, mode coupling and energy transfers. Here we bridge the boundary between these two techniques and develop AFM-2DIR nanospectroscopy. Our method offers the spatial precision of AFM in combination with the rich spectroscopic information provided by 2DIR. This approach mechanically detects the sample’s photothermal responses to a tip-enhanced femtosecond IR pulse sequence and extracts spatially resolved spectroscopic information via FFTs. In a proof-of-principle experiment, we elucidate the anharmonicity of a carbonyl vibrational mode. Further, leveraging the near-field photons’ high momenta from the tip enhancement for phase matching, we photothermally probe hyperbolic phonon polaritons in isotope-enriched h10BN. Our measurements unveil an energy transfer between phonon polaritons and phonons, as well as among different polariton modes, possibly aided by scattering at interfaces. The AFM-2DIR nanospectroscopy enables the in situ investigations of vibrational anharmonicity, coupling and energy transfers in heterogeneous materials and nanostructures, especially suitable for unravelling the relaxation process in two-dimensional materials at IR frequencies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Operation flow of the AFM-2DIR method with PFIR detection.
Fig. 2: Representations of 2D-PFIR spectrum of carbonyl vibrational mode.
Fig. 3: Real-space mapping and interpretation of hyperbolic PhP of an h10BN flake.
Fig. 4: 2D-PFIR spectra of h10BN revealing energy transfers.
Fig. 5: PhP propagation characteristics in h10BN and energy transfer pathways.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Chen, X. et al. Modern scattering‐type scanning near‐field optical microscopy for advanced material research. Adv. Mater. 31, 1804774 (2019).

    Article  Google Scholar 

  2. Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–162 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Mathurin, J. et al. Photothermal AFM-IR spectroscopy and imaging: status, challenges, and trends. J. Appl. Phys. 131, 010901 (2022).

    Article  CAS  Google Scholar 

  5. Xie, Q. & Xu, X. G. What do different modes of AFM-IR mean for measuring soft matter surfaces? Langmuir 39, 17593–17599 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article  PubMed  Google Scholar 

  7. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Xu, X. G. et al. One-dimensional surface phonon polaritons in boron nitride nanotubes. Nat. Commun. 5, 4782 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Luo, C. et al. Probing polaritons in 2D materials. Adv. Opt. Mater. 8, 1901416 (2020).

    Article  CAS  Google Scholar 

  11. Tamagnone, M. et al. Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. Sci. Adv. 4, eaat7189 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schwartz, J. J., Jakob, D. S. & Centrone, A. A guide to nanoscale IR spectroscopy: resonance enhanced transduction in contact and tapping mode AFM-IR. Chem. Soc. Rev. 51, 5248–5267 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, L. et al. Revealing phonon polaritons in hexagonal boron nitride by multipulse peak force infrared microscopy. Adv. Opt. Mater. 8, 1901084 (2020).

    Article  CAS  Google Scholar 

  14. Hamm, P., Lim, M. & Hochstrasser, R. M. Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy. J. Phys. Chem. B 102, 6123–6138 (1998).

    Article  CAS  Google Scholar 

  15. Hamm, P., Lim, M., DeGrado, W. F. & Hochstrasser, R. M. The two-dimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three-dimensional structure. Proc. Natl Acad. Sci. USA 96, 2036–2041 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khalil, M., Demirdöven, N. & Tokmakoff, A. Coherent 2D IR spectroscopy: molecular structure and dynamics in solution. J. Phys. Chem. A 107, 5258–5279 (2003).

    Article  CAS  Google Scholar 

  17. Asplund, M. C., Zanni, M. T. & Hochstrasser, R. M. Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes. Proc. Natl Acad. Sci. USA 97, 8219–8224 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng, J., Kwak, K. & Fayer, M. D. Ultrafast 2D IR vibrational echo spectroscopy. Acc. Chem. Res. 40, 75–83 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Wagner, M. et al. Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump–probe nanoscopy. Nano Lett. 14, 894–900 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Yao, Z. et al. Nanoimaging and nanospectroscopy of polaritons with time resolved s‐SNOM. Adv. Opt. Mater. 8, 1901042 (2020).

    Article  CAS  Google Scholar 

  21. Wagner, M. et al. Ultrafast dynamics of surface plasmons in InAs by time-resolved infrared nanospectroscopy. Nano Lett. 14, 4529–4534 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photon. 9, 674–678 (2015).

    Article  CAS  Google Scholar 

  23. Zhang, X. et al. Ultrafast anisotropic dynamics of hyperbolic nanolight pulse propagation. Sci. Adv. 9, eadi4407 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eisele, M. et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nat. Photon. 8, 841–845 (2014).

    Article  CAS  Google Scholar 

  25. Jiang, T., Kravtsov, V., Tokman, M., Belyanin, A. & Raschke, M. B. Ultrafast coherent nonlinear nanooptics and nanoimaging of graphene. Nat. Nanotechnol. 14, 838–843 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, L., Wang, H. & Xu, X. G. Principle and applications of peak force infrared microscopy. Chem. Soc. Rev. 51, 5268–5286 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Schneider, S. H., Kratochvil, H. T., Zanni, M. T. & Boxer, S. G. Solvent-independent anharmonicity for carbonyl oscillators. J. Phys. Chem. B 121, 2331–2338 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, H., Xie, Q., Zhang, Y. & Xu, X. G. Photothermally probing vibrational excited-state absorption with nanoscale spatial resolution through frequency-domain pump–probe peak force infrared microscopy. J. Phys. Chem. C 125, 8333–8338 (2021).

    Article  CAS  Google Scholar 

  29. Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Li, N. et al. Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nat. Mater. 20, 43–48 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 6, 6963 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    Article  CAS  Google Scholar 

  35. Alfaro-Mozaz, F. J. et al. Hyperspectral nanoimaging of van der Waals polaritonic crystals. Nano Lett. 21, 7109–7115 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Alfaro-Mozaz, F. J. et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat. Commun. 8, 15624 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chaudhary, K. et al. Engineering phonon polaritons in van der Waals heterostructures to enhance in-plane optical anisotropy. Sci. Adv. 5, eaau7171 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang, Y., Finch, M. F., Xiong, D. & Lail, B. A. Hybrid long-range hyperbolic phonon polariton waveguide using hexagonal boron nitride for mid-infrared subwavelength confinement. Opt. Express 26, 26272–26282 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Autore, M. et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light Sci. Appl. 7, 17172 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Klemens, P. G. Anharmonic decay of optical phonons. Phys. Rev. 148, 845–848 (1966).

    Article  CAS  Google Scholar 

  41. Srivastava, G. P. The anharmonic phonon decay rate in group-III nitrides. J. Phys. Condens. Matter 21, 174205 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Cuscó, R. et al. Isotopic effects on phonon anharmonicity in layered van der Waals crystals: isotopically pure hexagonal boron nitride. Phys. Rev. B 97, 155435 (2018).

    Article  Google Scholar 

  43. Ni, G. et al. Long-lived phonon polaritons in hyperbolic materials. Nano Lett. 21, 5767–5773 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Lee, I.-H. et al. Image polaritons in boron nitride for extreme polariton confinement with low losses. Nat. Commun. 11, 3649 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, H., Janzen, E., Wang, L., Edgar, J. H. & Xu, X. G. Probing mid-infrared phonon polaritons in the aqueous phase. Nano Lett. 20, 3986–3991 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Liu, S. et al. Single crystal growth of millimeter-sized monoisotopic hexagonal boron nitride. Chem. Mater. 30, 6222–6225 (2018).

    Article  CAS  Google Scholar 

  47. Xie, Q. & Xu, X. G. Fourier-transform atomic force microscope-based photothermal infrared spectroscopy with broadband source. Nano Lett. 22, 9174–9180 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Hamm, P. & Zanni, M. Concepts and Methods of 2D Infrared Spectroscopy (Cambridge Univ. Press, 2011).

  49. Ruggeri, F. S., Mannini, B., Schmid, R., Vendruscolo, M. & Knowles, T. P. J. Single molecule secondary structure determination of proteins through infrared absorption nanospectroscopy. Nat. Commun. 11, 2945 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Middleton, C. T., Woys, A. M., Mukherjee, S. S. & Zanni, M. T. Residue-specific structural kinetics of proteins through the union of isotope labeling, mid-IR pulse shaping, and coherent 2D IR spectroscopy. Methods 52, 12–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shim, S.-H., Strasfeld, D. B., Ling, Y. L. & Zanni, M. T. Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide. Proc. Natl Acad. Sci. USA 104, 14197–14202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dolado, I. et al. Remote near-field spectroscopy of vibrational strong coupling between organic molecules and phononic nanoresonators. Nat. Commun. 13, 6850 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guo, X. et al. Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes. Nat. Nanotechnol. 18, 529–534 (2023).

  54. Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Dery, S. & Gross, E. IR nanospectroscopy in catalysis research. In Ambient Pressure Spectroscopy in Complex Chemical Environments 1396, 147–173 (ACS, 2021).

Download references

Acknowledgements

We would like to thank M. T. Zanni, G. C. Walker, J.-H. Jiang and J. T. King for encouragement and consultation on the 2DIR spectroscopy or time-resolved spectroscopy. X.G.X. would like to acknowledge support from the Beckman Young Investigator Award from the Arnold and Mabel Beckman Foundation, the Sloan Research Fellowship from the Alfred P. Sloan Foundation and the Camille Dreyfus Teacher-Scholar Award from the Camille and Henry Dreyfus Foundation. Q.X. and X.G.X. would also like to acknowledge support from the National Science Foundation, award no. CHE 1847765, and Lehigh grant no. COREAWD41. Support for the hBN crystal growth came from the Office of Naval Research, award no. N00014-22-1-2582.

Author information

Authors and Affiliations

Authors

Contributions

X.G.X. conceived the design of the AFM-2DIR experiment and instrument. The experimental setup was built by X.G.X. and Q.X. Q.X. carried out the experiment, simulation, data collection and analysis. E.J. and J.H.E. provides the isotope-enriched h10BN for the study. Y.Z. provided assistance on the carbonyl anharmonicity interpretation. The paper was written together by X.G.X. and Q.X. X.G.X. oversaw the research.

Corresponding author

Correspondence to Xiaoji G. Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Qing Dai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Note 1.

Source data

41565_2024_1670_MOESM2_ESM.xlsx

Source Data Fig. 2. Raw data for the carbonyl measurements shown in Fig. 2a,c. There are four columns in each dataset: time axis of t1, PFIR photothermal signal, scanned t2-stage location and scanned t1-stage location. After sequential FFTs, the time-domain 2D spectrum should be plotted from the raw data here. Source Data Fig. 4. Raw data for the h10BN AFM-2DIR measurements shown in Fig. 4d,e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Q., Zhang, Y., Janzen, E. et al. Atomic-force-microscopy-based time-domain two-dimensional infrared nanospectroscopy. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01670-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01670-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing