Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Toroidic phase transitions in a direct-kagome artificial spin ice

Abstract

Ferrotoroidicity—the fourth form of primary ferroic order—breaks both space and time-inversion symmetry. So far, direct observation of ferrotoroidicity in natural materials remains elusive, which impedes the exploration of ferrotoroidic phase transitions. Here we overcome the limitations of natural materials using an artificial nanomagnet system that can be characterized at the constituent level and at different effective temperatures. We design a nanomagnet array as to realize a direct-kagome spin ice. This artificial spin ice exhibits robust toroidal moments and a quasi-degenerate ground state with two distinct low-temperature toroidal phases: ferrotoroidicity and paratoroidicity. Using magnetic force microscopy and Monte Carlo simulation, we demonstrate a phase transition between ferrotoroidicity and paratoroidicity, along with a cross-over to a non-toroidal paramagnetic phase. Our quasi-degenerate artificial spin ice in a direct-kagome structure provides a model system for the investigation of magnetic states and phase transitions that are inaccessible in natural materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quasi-degenerate direct-kagome ASI with well-defined toroidal moments.
Fig. 2: Three thermal phases and phase transitions.
Fig. 3: Lattice-constant-dependent experiments.
Fig. 4: Accessing effective thermal states by tuning the lattice constant.
Fig. 5: Visualizing toroidic phase transitions from magnetic structure factors.

Similar content being viewed by others

Data availability

All of the data supporting this study are available via the FigShare public repository at https://doi.org/10.6084/m9.figshare.24270862 (ref. 60).

Code availability

The code of Monte Carlo simulations used in this study is available via the Zenodo public repository at https://doi.org/10.5281/zenodo.10825074 (ref. 61).

References

  1. Van Aken, B. B., Rivera, J. P., Schmid, H. & Fiebig, M. Observation of ferrotoroidic domains. Nature 449, 702–705 (2007).

    Article  PubMed  Google Scholar 

  2. Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 1–14 (2016).

    Article  Google Scholar 

  3. Gnewuch, S. & Rodriguez, E. E. The fourth ferroic order: current status on ferrotoroidic materials. J. Solid State Chem. 271, 175–190 (2019).

    Article  CAS  Google Scholar 

  4. Wang, R. F. et al. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Nisoli, C., Moessner, R. & Schiffer, P. Colloquium: artificial spin ice: designing and imaging magnetic frustration. Rev. Mod. Phys. 85, 1473–1490 (2013).

    Article  CAS  Google Scholar 

  6. Heyderman, L. J. & Stamps, R. L. Artificial ferroic systems: novel functionality from structure, interactions and dynamics. J. Phys. Condens. Matter 25, 363201 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Rougemaille, N. & Canals, B. Cooperative magnetic phenomena in artificial spin systems: spin liquids, Coulomb phase and fragmentation of magnetism—a colloquium. Eur. Phys. J. B 92, 62 (2019).

    Article  Google Scholar 

  8. Skjærvø, S. H., Marrows, C. H., Stamps, R. L. & Heyderman, L. J. Advances in artificial spin ice. Nat. Rev. Phys. 2, 13–28 (2020).

    Article  Google Scholar 

  9. Zhang, S. et al. Crystallites of magnetic charges in artificial spin ice. Nature 500, 553–557 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Mengotti, E. et al. Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice. Nat. Phys. 7, 68–74 (2011).

    Article  CAS  Google Scholar 

  11. Farhan, A. et al. Direct observation of thermal relaxation in artificial spin ice. Phys. Rev. Lett. 111, 057204 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Chern, G. W., Morrison, M. J. & Nisoli, C. Degeneracy and criticality from emergent frustration in artificial spin ice. Phys. Rev. Lett. 111, 177201 (2013).

    Article  PubMed  Google Scholar 

  13. Morrison, M. J., Nelson, T. R. & Nisoli, C. Unhappy vertices in artificial spin ice: new degeneracies from vertex frustration. New J. Phys. 15, 045009 (2013).

    Article  Google Scholar 

  14. Gilbert, I. et al. Emergent ice rule and magnetic charge screening from vertex frustration in artificial spin ice. Nat. Phys. 10, 670–675 (2014).

    Article  CAS  Google Scholar 

  15. Gilbert, I. et al. Emergent reduced dimensionality by vertex frustration in artificial spin ice. Nat. Phys. 12, 162–165 (2016).

    Article  CAS  Google Scholar 

  16. Farhan, A. et al. Emergent magnetic monopole dynamics in macroscopically degenerate artificial spin ice. Sci. Adv. 5, eaav6380 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hügli, R. V. et al. Artificial kagome spin ice: dimensional reduction, avalanche control and emergent magnetic monopoles. Phil. Trans. R. Soc. A 370, 5767–5782 (2012).

    Article  PubMed  Google Scholar 

  18. Ladak, S., Read, D. E., Perkins, G. K., Cohen, L. F. & Branford, W. R. Direct observation of magnetic monopole defects in an artificial spin-ice system. Nat. Phys. 6, 359–363 (2010).

    Article  CAS  Google Scholar 

  19. Anghinolfi, L. et al. Thermodynamic phase transitions in a frustrated magnetic metamaterial. Nat. Commun. 6, 8278 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Canals, B. et al. Fragmentation of magnetism in artificial kagome dipolar spin ice. Nat. Commun. 7, 11446 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sendetskyi, O. et al. Continuous magnetic phase transition in artificial square ice. Phys. Rev. B 99, 214430 (2019).

    Article  CAS  Google Scholar 

  22. Lehmann, J., Donnelly, C., Derlet, P. M., Heyderman, L. J. & Fiebig, M. Poling of an artificial magneto-toroidal crystal. Nat. Nanotechnol. 14, 141–144 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Lehmann, J. et al. Relation between microscopic interactions and macroscopic properties in ferroics. Nat. Nanotechnol. 15, 896–900 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Gartside, J. C. et al. Realization of ground state in artificial kagome spin ice via topological defect-driven magnetic writing. Nat. Nanotechnol. 13, 53–58 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Rougemaille, N. et al. Artificial kagome arrays of nanomagnets: a frozen dipolar spin ice. Phys. Rev. Lett. 106, 057209 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Chern, G. W., Mellado, P. & Tchernyshyov, O. Two-stage ordering of spins in dipolar spin ice on the kagome lattice. Phys. Rev. Lett. 106, 207202 (2011).

    Article  PubMed  Google Scholar 

  27. Möller, G. & Moessner, R. Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays. Phys. Rev. B 80, 140409 (2009).

    Article  Google Scholar 

  28. Qi, Y., Brintlinger, T. & Cumings, J. Direct observation of the ice rule in an artificial kagome spin ice. Phys. Rev. B 77, 094418 (2008).

    Article  Google Scholar 

  29. Tanaka, M., Saitoh, E., Miyajima, H., Yamaoka, T. & Iye, Y. Magnetic interactions in a ferromagnetic honeycomb nanoscale network. Phys. Rev. B 73, 052411 (2006).

    Article  Google Scholar 

  30. Oǧuz, E. C. et al. Topology restricts quasidegeneracy in sheared square colloidal ice. Phys. Rev. Lett. 124, 238003 (2020).

    Article  PubMed  Google Scholar 

  31. Perrin, Y., Canals, B. & Rougemaille, N. Quasidegenerate ice manifold in a purely two-dimensional square array of nanomagnets. Phys. Rev. B 99, 224434 (2019).

    Article  CAS  Google Scholar 

  32. Nisoli, C. et al. Effective temperature in an interacting vertex system: theory and experiment on artificial spin ice. Phys. Rev. Lett. 105, 047205 (2010).

    Article  PubMed  Google Scholar 

  33. Schánilec, V. et al. Bypassing dynamical freezing in artificial kagome ice. Phys. Rev. Lett. 125, 057203 (2020).

    Article  PubMed  Google Scholar 

  34. Yue, W. C. et al. Crystallizing kagome artificial spin ice. Phys. Rev. Lett. 129, 057202 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Hofhuis, K. et al. Real-space imaging of phase transitions in bridged artificial kagome spin ice. Nat. Phys. 18, 699–705 (2022).

    Article  CAS  Google Scholar 

  36. Zhang, X. et al. Understanding thermal annealing of artificial spin ice. APL Mater. 7, 111112 (2019).

    Article  Google Scholar 

  37. Nascimento, F. S., Mól, L. A. S., Moura-Melo, W. A. & Pereira, A. R. From confinement to deconfinement of magnetic monopoles in artificial rectangular spin ices. New J. Phys. 14, 115019 (2012).

    Article  Google Scholar 

  38. Ribeiro, I. R. B. et al. Realization of rectangular artificial spin ice and direct observation of high energy topology. Sci Rep. 7, 13982 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Östman, E. et al. Interaction modifiers in artificial spin ices. Nat. Phys. 14, 375–379 (2018).

    Article  Google Scholar 

  40. Branford, W. R., Ladak, S., Read, D. E., Zeissler, K. & Cohen, L. F. Emerging chirality in artificial spin ice. Science 335, 1597–1600 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Schánilec, V. et al. Approaching the topological low-energy physics of the F model in a two-dimensional magnetic lattice. Phys. Rev. Lett. 129, 027202 (2022).

    Article  PubMed  Google Scholar 

  42. King, A. D., Nisoli, C., Dahl, E. D., Poulin-Lamarre, G. & Lopez-Bezanilla, A. Qubit spin ice. Science 373, 576–580 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Lopez-Bezanilla, A. & Nisoli, C. Field-induced magnetic phases in a qubit Penrose quasicrystal. Sci. Adv. 9, eadf6631 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lopez-Bezanilla, A. et al. Kagome qubit ice. Nat. Commun. 14, 1105 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Libál, A., Reichhardt, C. J. O. & Reichhardt, C. Creating artificial ice states using vortices in nanostructured superconductors. Phys. Rev. Lett. 102, 237004 (2009).

    Article  PubMed  Google Scholar 

  46. Latimer, M. L., Berdiyorov, G. R., Xiao, Z. L., Peeters, F. M. & Kwok, W. K. Realization of artificial ice systems for magnetic vortices in a superconducting MoGe thin film with patterned nanostructures. Phys. Rev. Lett. 111, 067001 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Trastoy, J. et al. Freezing and thawing of artificial ice by thermal switching of geometric frustration in magnetic flux lattices. Nat. Nanotechnol. 9, 710–715 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, Y. L. et al. Switchable geometric frustration in an artificial-spin-ice-superconductor heterosystem. Nat. Nanotechnol. 13, 560–565 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Ortiz-Ambriz, A. & Tierno, P. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices. Nat. Commun. 7, 10575 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rollano, V. et al. Topologically protected superconducting ratchet effect generated by spin-ice nanomagnets. Nanotechnology 30, 244003 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Lyu, Y. et al. Reconfigurable pinwheel artificial-spin-ice and superconductor hybrid device. Nano Lett. 20, 8933 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Lendinez, S. & Jungfleisch, M. B. Magnetization dynamics in artificial spin ice. J. Phys. Condens. Matter 32, 013001 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Gliga, S., Iacocca, E. & Heinonen, O. G. Dynamics of reconfigurable artificial spin ice: toward magnonic functional materials. APL Mater. 8, 040911 (2020).

    Article  CAS  Google Scholar 

  54. Gartside, J. C. et al. Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting. Nat. Nanotechnol. 17, 460–469 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Hu, W. et al. Distinguishing artificial spin ice states using magnetoresistance effect for neuromorphic computing. Nat. Commun. 14, 2562 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nadeem, M., Fuhrer, M. S. & Wang, X. The superconducting diode effect. Nat. Rev. Phys. 5, 558 (2023).

    Article  Google Scholar 

  57. Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

    Article  Google Scholar 

  58. Leliaert, J. et al. Fast micromagnetic simulations on GPU—recent advances made with mumax3. J. Phys. D. 51, 123002 (2018).

    Article  Google Scholar 

  59. Saglam, H. et al. Entropy-driven order in an array of nanomagnets. Nat. Phys. 18, 706–712 (2022).

    Article  CAS  Google Scholar 

  60. Wang, Y.-L. et al. FigShare https://doi.org/10.6084/m9.figshare.24270862(2024).

  61. Yuan, Z., Yue, W.-C. & Wang, Y.-L. Monte Carlo Simulation Programs for Direct-Kagome Artificial Spin Ice (Zenodo, 2024); https://doi.org/10.5281/zenodo.10825074

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (grant no. 62288101 to H.W., 62274086 to Y.-L.W., 12204434 to Y.D. and 62271245 to X.T.), the National Key R&D Program of China (grant no. 2021YFA0718802 to H.W. and Y.-L.W., and 2023YFF0718400 to Y.D.), a Postdoctoral Fellowship Program of CPSF, and Jiangsu Outstanding Postdoctoral Program to W.-C.Y. and Y.-Y.L. The work of C.N. was performed under the auspices of the US DOE through Los Alamos National Laboratory, operated by Triad National Security, LLC (contract no. 229892333218NCA000001) and financed by a grant from the DOE-LDRD office.

Author information

Authors and Affiliations

Authors

Contributions

W.-C.Y. and Y.-L.W. conceived the project. W.-C.Y., Z.Y., X.T., L.H. and L.K. fabricated the samples. W.-C.Y., Z.Y. and Y.S. performed the thermal annealing. W.-C.Y. and Z.Y. performed MFM imaging. Z.Y. and C.N. performed the Monte Carlo simulations and the theoretical analysis. W.-C.Y. and P.H. performed the micromagnetic simulations. W.-C.Y., Z.Y. and Y.-Y.L. performed the statistical analysis. Z.Y. calculated the MSF. W.-C.Y., Z.Y., Y.D., S.D., C.N. and Y.-L.W. analysed and interpreted the data. W.-C.Y., Z.Y., S.D., H.W., C.N. and Y.-L.W. wrote and edited the manuscript. X.C., H.W., P.W., C.N. and Y.-L.W. supervised the project.

Corresponding authors

Correspondence to Sining Dong, Huabing Wang, Cristiano Nisoli or Yong-Lei Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Jack Gartside, Nicolas Rougemaille and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 SEM images of samples with various lattice constants.

Scale bar, 500 nm (a-h), 1 μm (i-l) and 2 μm (m).

Extended Data Fig. 2 The annealing process.

a The sample was heated from room temperature to an annealing temperature of 550 °C in 60 min, held for 15 min, then cooled from 550 °C to 100 °C with 0.3 °C min−1. b and c SEM (b) and MFM (c) images of a square ASI sample, which served as a reference and was annealed on the same substrate of the direct-kagome ASIs. The nanomagnet size is the same with that of the direct-kagome ASI. The lattice constant of the square ASI is 360 nm. The nearly perfect ground state proves the effectiveness of our annealing.

Extended Data Fig. 3 MFM images with various lattice constants.

a-m, The MFM imaging was conducted after a sample annealing process shown in Extended Data Fig. 1. Scale bar, 2 μm.

Extended Data Fig. 4 Vertex distributions extracted from Extended Data Fig. 3.

a-m, Vertices of Types I, II-α, III, II-β, and IV are shown in gray, light blue, green, gold and magenta, respectively. Scale bar, 2 μm.

Extended Data Fig. 5 Toroidal moment distributions corresponding to vertex distributions in Extended Data Fig. 4.

a-m, Red and blue denote positive and negative toroidal moments, respectively. Scale bar, 2 μm.

Extended Data Fig. 6 Spin MSF maps for all the samples.

a-m, Spin MSF maps for the samples with various lattice constants ranging from 300 nm to 1760 nm, respectively. The color scale refers to the intensity at a given point (qx, qy) of reciprocal space.

Extended Data Fig. 7 Toroidal moment MSF maps for all the samples.

a-m, Toroidal moment MSF maps corresponding to the spin MSF maps in Extended Data Fig. 6, respectively. The colour scale refers to the intensity at a given point (qx, qy) of reciprocal space.

Extended Data Fig. 8 Strong and weak Bragg peaks in spin MSF of the direct-kagome ASI.

a, The spin MSF map of ideal ferrotoroidic ordering. A weak Bragg peak and a strong Bragg peak are marked by vectors \({\overrightarrow{q}}_{1}\) and \({\overrightarrow{q}}_{2}\), respectively. The color scale refers to the intensity at a given point (qx, qy) of reciprocal space. b, the \({\overrightarrow{q}}_{1}\) peak originates from the spin scattering between neighboring nanomagnets with an angle of 120 degrees. c, the \({\overrightarrow{q}}_{2}\) peak originates from the spin scattering between neighboring nanomagnets with an angle of 60 degrees. d, line cuts of MSF maps across \({\overrightarrow{q}}_{1}\) and \({\overrightarrow{q}}_{2}\) peaks from (a). The different spin components, \({\overrightarrow{S}}^{\perp }\), perpendicular to \({\overrightarrow{q}}_{1}\) and \({\overrightarrow{q}}_{2}\) lead to distinct intensities in the MSF for \({\overrightarrow{q}}_{1}\) and \({\overrightarrow{q}}_{2}\) (refer to Supplemental Information for a detailed derivation).

Extended Data Fig. 9 MC simulations of specific heat and entropy under various coupling energies.

When the lowest excitation energy E1 approaching the second lowest excitation energy E2, the low-temperature phase transition peak is gradually merging into the high-temperature cross-over. Therefore, the quasi-degeneracy, requiring E1«E2, is critical for observing the low-temperature phase transition.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Discussion and Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, WC., Yuan, Z., Huang, P. et al. Toroidic phase transitions in a direct-kagome artificial spin ice. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01666-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01666-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing