Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phase-separated porous nanocomposite with ultralow percolation threshold for wireless bioelectronics

Abstract

Realizing the full potential of stretchable bioelectronics in wearables, biomedical implants and soft robotics necessitates conductive elastic composites that are intrinsically soft, highly conductive and strain resilient. However, existing composites usually compromise electrical durability and performance due to disrupted conductive paths under strain and rely heavily on a high content of conductive filler. Here we present an in situ phase-separation method that facilitates microscale silver nanowire assembly and creates self-organized percolation networks on pore surfaces. The resultant nanocomposites are highly conductive, strain insensitive and fatigue tolerant, while minimizing filler usage. Their resilience is rooted in multiscale porous polymer matrices that dissipate stress and rigid conductive fillers adapting to strain-induced geometry changes. Notably, the presence of porous microstructures reduces the percolation threshold (Vc = 0.00062) by 48-fold and suppresses electrical degradation even under strains exceeding 600%. Theoretical calculations yield results that are quantitatively consistent with experimental findings. By pairing these nanocomposites with near-field communication technologies, we have demonstrated stretchable wireless power and data transmission solutions that are ideal for both skin-interfaced and implanted bioelectronics. The systems enable battery-free wireless powering and sensing of a range of sweat biomarkers—with less than 10% performance variation even at 50% strain. Ultimately, our strategy offers expansive material options for diverse applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic and fabrication of strain-insensitive PSPN with ultralow percolation thresholds.
Fig. 2: Phase-separation, electrical and mechanical characterization.
Fig. 3: Radiofrequency properties of the stretchable PSPN coils under tensile strain.
Fig. 4: Stretchable wireless powering system for wearable and implantable bioelectronics.
Fig. 5: Wireless stretchable bioelectronics for multiplexed biochemical sensing.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. Source data for Figs. 15 are provided with this paper. Source data are provided with this paper.

References

  1. Jung, D. et al. Highly conductive and elastic nanomembrane for skin electronics. Science 373, 1022–1026 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Choi, S. et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Lee, W. et al. Universal assembly of liquid metal particles in polymers enables elastic printed circuit board. Science 378, 637–641 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Matsuhisa, N. et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16, 834–840 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Veerapandian, S. et al. Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines. Nat. Mater. 20, 533–540 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Hui, Y. et al. Three-dimensional printing of soft hydrogel electronics. Nat. Electron. 5, 893–903 (2022).

    Article  CAS  Google Scholar 

  7. Jiang, Z. et al. A 1.3-micrometre-thick elastic conductor for seamless on-skin and implantable sensors. Nat. Electron. 5, 784–793 (2022).

    Article  CAS  Google Scholar 

  8. Zhao, Y. et al. A self-healing electrically conductive organogel composite. Nat. Electron. 6, 206–215 (2023).

    Article  CAS  Google Scholar 

  9. Jiang, Z. et al. Highly stretchable metallic nanowire networks reinforced by the underlying randomly distributed elastic polymer nanofibers via interfacial adhesion improvement. Adv. Mater. 31, 1903446 (2019).

    Article  Google Scholar 

  10. Luo, Y. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, C., He, T., Zhou, H., Zhang, Z. & Lee, C. Artificial intelligence enhanced sensors—enabling technologies to next-generation healthcare and biomedical platform. Bioelectron. Med. 9, 17 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi, S., Han, S. I., Kim, D., Hyeon, T. & Kim, D.-H. High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem. Soc. Rev. 48, 1566–1595 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Sim, K., Rao, Z., Ershad, F. & Yu, C. Rubbery electronics fully made of stretchable elastomeric electronic materials. Adv. Mater. 32, 1902417 (2020).

    Article  CAS  Google Scholar 

  14. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang, Y. & Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Kim, J. J. et al. Skin electronics: next‐generation device platform for virtual and augmented reality. Adv. Funct. Mater. 31, 2009602 (2021).

    Article  CAS  Google Scholar 

  17. Yamagishi, K., Zhou, W., Ching, T., Huang, S. Y. & Hashimoto, M. Ultra‐deformable and tissue‐adhesive liquid metal antennas with high wireless powering efficiency. Adv. Mater. 33, 2008062 (2021).

    Article  CAS  Google Scholar 

  18. Zhuang, Q. et al. Wafer-patterned, permeable, and stretchable liquid metal microelectrodes for implantable bioelectronics with chronic biocompatibility. Sci. Adv. 9, eadg8602 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jung, D. et al. Adaptive self‐organization of nanomaterials enables strain‐insensitive resistance of stretchable metallic nanocomposites. Adv. Mater. 34, 2200980 (2022).

    Article  CAS  Google Scholar 

  20. Wang, T., Liu, Q., Liu, H., Xu, B. & Xu, H. Printable and highly stretchable viscoelastic conductors with kinematically reconstructed conductive pathways. Adv. Mater. 34, 2202418 (2022).

    Article  CAS  Google Scholar 

  21. Kim, S. H. et al. An ultrastretchable and self-healable nanocomposite conductor enabled by autonomously percolative electrical pathways. ACS Nano 13, 6531–6539 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Sun, B. et al. Gas‐permeable, multifunctional on‐skin electronics based on laser‐induced porous graphene and sugar‐templated elastomer sponges. Adv. Mater. 30, 1804327 (2018).

    Article  Google Scholar 

  23. Yi, H. et al. Constructing high-performance 3D porous self-standing electrodes with various morphologies and shapes by a flexible phase separation-derived method. J. Mater. Chem. A 7, 22550–22558 (2019).

    Article  CAS  Google Scholar 

  24. Wang, Y., Yokota, T. & Someya, T. Electrospun nanofiber-based soft electronics. NPG Asia Mater. 13, 22 (2021).

    Article  Google Scholar 

  25. Zhu, D., Handschuh-Wang, S. & Zhou, X. Recent progress in fabrication and application of polydimethylsiloxane sponges. J. Mater. Chem. A 5, 16467–16497 (2017).

    Article  CAS  Google Scholar 

  26. Yao, S. et al. Ultrasoft porous 3D conductive dry electrodes for electrophysiological sensing and myoelectric control. Adv. Mater. Technol. 7, 2101637 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhou, W. et al. Gas-permeable, ultrathin, stretchable epidermal electronics with porous electrodes. ACS Nano 14, 5798–5805 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, F. et al. Progress report on phase separation in polymer solutions. Adv. Mater. 31, 1806733 (2019).

    Article  Google Scholar 

  29. Hołda, A. K. & Vankelecom, I. F. Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. J. Appl. Polym. Sci. 132, 42130 (2015).

    Article  Google Scholar 

  30. Mandal, J. et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–319 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Zhu, H.-W. et al. Printable elastic silver nanowire-based conductor for washable electronic textiles. Nano Res. 13, 2879–2884 (2020).

    Article  CAS  Google Scholar 

  32. Lee, H. J., Jung, B., Kang, Y. S. & Lee, H. Phase separation of polymer casting solution by nonsolvent vapor. J. Membr. Sci. 245, 103–112 (2004).

    Article  CAS  Google Scholar 

  33. Sun, X., Sun, G. & Wang, X. Morphology modeling for polymer monolith obtained by non-solvent-induced phase separation. Polymer 108, 432–441 (2017).

    Article  CAS  Google Scholar 

  34. Binks, B. & Lumsdon, S. Pickering emulsions stabilized by monodisperse latex particles: effects of particle size. Langmuir 17, 4540–4547 (2001).

    Article  CAS  Google Scholar 

  35. Hu, N., Karube, Y., Yan, C., Masuda, Z. & Fukunaga, H. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater. 56, 2929–2936 (2008).

    Article  CAS  Google Scholar 

  36. Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S. & Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8, 5154–5163 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Li, J. et al. Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv. Funct. Mater. 17, 3207–3215 (2007).

    Article  CAS  Google Scholar 

  38. Taherian, R. Development of an equation to model electrical conductivity of polymer-based carbon nanocomposites. ECS J. Solid State Sci. Technol. 3, M26–M38 (2014).

    Article  CAS  Google Scholar 

  39. Liu, Y. et al. Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes. Nano Lett. 17, 1090–1096 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, S., Rao, Y., Jang, H., Tan, P. & Lu, N. Strategies for body-conformable electronics. Matter 5, 1104–1136 (2022).

    Article  CAS  Google Scholar 

  42. Kim, Y. et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–63 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Boland, C. S. et al. Sensitive electromechanical sensors using viscoelastic graphene–polymer nanocomposites. Science 354, 1257–1260 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Sun, H., Han, Z. & Willenbacher, N. Ultrastretchable conductive elastomers with a low percolation threshold for printed soft electronics. ACS Appl. Mater. Interfaces 11, 38092–38102 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, Y., Ji, X. & Liang, J. Rupture stress of liquid metal nanoparticles and their applications in stretchable conductors and dielectrics. Npj Flex. Electron. 5, 11 (2021).

    Article  CAS  Google Scholar 

  46. Ma, Z. et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20, 859–868 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Chung, H. U. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363, eaau0780 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ouyang, W. et al. A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals. Nat. Biomed. Eng. 7, 1252–1269 (2023).

    Article  PubMed  Google Scholar 

  49. Jiang, Y. et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. 41, 652–662 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, Y. et al. High precision epidermal radio frequency antenna via nanofiber network for wireless stretchable multifunction electronics. Nat. Commun. 11, 5629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, T.-L. et al. Battery-free, tuning circuit–inspired wireless sensor systems for detection of multiple biomarkers in bodily fluids. Sci. Adv. 8, eabo7049 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Park, S. I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 33, 1280–1286 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Z. Yan acknowledges financial support from the start-up fund of the University of Missouri-Columbia. Z. Yan, P.-Y.C. and J.X. acknowledge the National Institute of Biomedical Imaging and Bioengineering (award number R01EB033371). The human study was supported by Z. Yan’s start-up fund. W.G. acknowledges support from National Institutes of Health grants (R01HL155815 and R21DK13266). P.-Y.C. acknowledges financial support from NSF ECCS 2229659. I.O. acknowledges financial support from the start-up fund of the University of Missouri-Columbia.

Author information

Authors and Affiliations

Authors

Contributions

Z. Yan, Y.X., P.-Y.C. and Z. Ye conceived the idea and led research efforts. Y.X., Z. Ye, G.Z., Q.F., Z.C., J.L., M.Y., Y.R., Y.L., X.Q., L.S. and J.X. performed the experiments. J.L. conducted numerical simulations. I.O. and B.B. led animal studies and performed surgeries. Z. Yan, Y.X., Z. Ye and W.G. wrote the paper with assistance of the other coauthors.

Corresponding authors

Correspondence to Wei Gao, Pai-Yen Chen or Zheng Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Michael Dickey, Chengkuo Lee and Xuechang Zhou for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, Figs. 1–31, Notes 1–4, references and video captions.

Reporting Summary

Supplementary Video 1

Demonstration of PSPN mechanical resilience.

Supplementary Video 2

ECG recording with strain-insensitive PSPN electrical wires.

Supplementary Video 3

Wireless control of the implanted optoelectronic system.

Supplementary Video 4

Wireless powering of the implanted optoelectronic system.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 5

Source data for Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Ye, Z., Zhao, G. et al. Phase-separated porous nanocomposite with ultralow percolation threshold for wireless bioelectronics. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01658-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01658-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing