Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering interfacial polarization switching in van der Waals multilayers

Abstract

In conventional ferroelectric materials, polarization is an intrinsic property limited by bulk crystallographic structure and symmetry. Recently, it has been demonstrated that polar order can also be accessed using inherently non-polar van der Waals materials through layer-by-layer assembly into heterostructures, wherein interfacial interactions can generate spontaneous, switchable polarization. Here we show that deliberate interlayer rotations in multilayer van der Waals heterostructures modulate both the spatial ordering and switching dynamics of polar domains. The engendered tunability is unparalleled in conventional bulk ferroelectrics or polar bilayers. By means of operando transmission electron microscopy we show how alterations of the relative rotations of three WSe2 layers produce structural polytypes with distinct arrangements of polar domains with either a global or localized switching response. Furthermore, the presence of uniaxial strain generates structural anisotropy that yields a range of switching behaviours, coercivities and even tunable biased responses. We also provide evidence of mechanical coupling between the two interfaces of the trilayer, a key consideration for the control of switching dynamics in polar multilayer structures more broadly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TTL-WSe2 polytypes and assignment of polar domains.
Fig. 2: Polar domain dynamics in AtA′ WSe2.
Fig. 3: Biased polarization from heterostrain gradients in the AtA′ polytype.
Fig. 4: Polarization switching in the tAB′ polytype.
Fig. 5: Design principles for tuning polarization-switching dynamics in twisted WSe2 trilayers.

Similar content being viewed by others

Data availability

All data shown in this work are available on Zenodo at https://doi.org/10.5281/zenodo.10697962 (ref. 54).

Code availability

Scripts used for multislice simulations are available on Zenodo at https://doi.org/10.5281/zenodo.10697962 (ref. 54).

References

  1. Haertling, G. H. Ferroelectric ceramics: history and technology. J. Am. Ceram. 82, 797–818 (1999).

    Article  CAS  Google Scholar 

  2. Mikolajick, T., Schroeder, U. & Slesazeck, S. The past, the present, and the future of ferroelectric memories. IEEE Trans. Electron Devices 67, 1434–1443 (2020).

    Article  ADS  CAS  Google Scholar 

  3. Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article  ADS  CAS  Google Scholar 

  5. Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    Article  ADS  CAS  Google Scholar 

  6. Ferreira, F., Enaldiev, V. & Fal’ko, V. Scaleability of dielectric susceptibility εzz with the number of layers and additivity of ferroelectric polarization in van der Waals semiconductors. Phys. Rev. B 106, 125408 (2022).

    Article  ADS  CAS  Google Scholar 

  7. Ferreira, F., Enaldiev, V. V., Fal’ko, V. I. & Magorrian, S. J. Weak ferroelectric charge transfer in layer-asymmetric bilayers of 2D semiconductors. Sci. Rep. 11, 13422 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rogée, L. et al. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science 376, 973–978 (2022).

    Article  ADS  PubMed  Google Scholar 

  11. Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Meng, P. et al. Sliding induced multiple polarization states in two-dimensional ferroelectrics. Nat. Commun. 13, 7696 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ko, K. et al. Operando electron microscopy investigation of polar domain dynamics in twisted van der Waals homobilayers. Nat. Mater. 22, 992–998 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Craig, I. M. et al. Local atomic stacking and symmetry in twisted graphene trilayers. Nat. Mater. 23, 323–330 (2024).

    Article  CAS  PubMed  Google Scholar 

  17. Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Sung, S. H., Schnitzer, N., Brown, L., Park, J. & Hovden, R. Stacking, strain, and twist in 2D materials quantified by 3D electron diffraction. Phys. Rev. Mater. 3, 064003 (2019).

    Article  CAS  Google Scholar 

  19. Kazmierczak, N. P. et al. Strain fields in twisted bilayer graphene. Nat. Mater. 20, 956–963 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Zachman, M. J. et al. Interferometric 4D-STEM for lattice distortion and interlayer spacing measurements of bilayer and trilayer 2D materials. Small 17, 2100388 (2021).

    Article  CAS  Google Scholar 

  21. Van Winkle, M. et al. Rotational and dilational reconstruction in transition metal dichalcogenide moiré bilayers. Nat. Commun. 14, 2989 (2023).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Enaldiev, V. V., Ferreira, F. & Fal’ko, V. I. A scalable network model for electrically tunable ferroelectric domain structure in twistronic bilayers of two-dimensional semiconductors. Nano. Lett. 22, 1534–1540 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Engelke, R. et al. Topological nature of dislocation networks in two-dimensional moiré materials. Phys. Rev. B 107, 125413 (2023).

    Article  ADS  CAS  Google Scholar 

  25. Huder, L. et al. Electronic spectrum of twisted graphene layers under heterostrain. Phys. Rev. Lett. 120, 156405 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Edelberg, D., Kumar, H., Shenoy, V., Ochoa, H. & Pasupathy, A. N. Tunable strain soliton networks confine electrons in van der Waals materials. Nat. Phys. 16, 1097–1102 (2020).

    Article  CAS  Google Scholar 

  27. Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 602, 41–50 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Cosma, D. A., Wallbank, J. R., Cheianov, V. & Fal’Ko, V. I. Moiré pattern as a magnifying glass for strain and dislocations in van der Waals heterostructures. Faraday Discuss. 173, 137–143 (2014).

    CAS  PubMed  Google Scholar 

  29. Molino, L. et al. Ferroelectric switching at symmetry-broken interfaces by local control of dislocation networks. Adv. Mater. 35, 2207816 (2023).

    Article  CAS  Google Scholar 

  30. Zhang, H., Fu, Z., Legut, D., Germann, T. C. & Zhang, R. Stacking stability and sliding mechanism in weakly bonded 2D transition metal carbides by van der Waals force. RSC Adv. 7, 55912–55919 (2017).

    Article  ADS  CAS  Google Scholar 

  31. Johnson, M., Bloemen, P., Den Broeder, F. & De Vries, J. Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 59, 1409 (1996).

    Article  ADS  CAS  Google Scholar 

  32. Paes, V. Z. & Mosca, D. H. Effective elastic and magnetoelastic anisotropies for thin films with hexagonal and cubic crystal structures. J. Magn. Magn. Mater. 330, 81–87 (2013).

    Article  ADS  CAS  Google Scholar 

  33. Geisenhof, F. R. et al. Anisotropic strain-induced soliton movement changes stacking order and band structure of graphene multilayers: implications for charge transport. ACS Appl. Nano Mater. 2, 6067–6075 (2019).

    Article  CAS  Google Scholar 

  34. Lee, D. et al. Giant flexoelectric effect in ferroelectric epitaxial thin films. Phys. Rev. Lett. 107, 057602 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Jeon, B. C. et al. Flexoelectric effect in the reversal of self-polarization and associated changes in the electronic functional properties of BiFeO3 thin films. Adv. Mater. 25, 5643–5649 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Hou, W. et al. Nonvolatile ferroelastic strain from flexoelectric internal bias engineering. Phys. Rev. Appl. 17, 024013 (2022).

    Article  ADS  CAS  Google Scholar 

  37. Wu, M. Two-dimensional van der Waals ferroelectrics: scientific and technological opportunities. ACS Nano 15, 9229–9237 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, C., You, L., Cobden, D. & Wang, J. Towards two-dimensional van der Waals ferroelectrics. Nat. Mater. 22, 542–552 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 1–6 (2016).

    ADS  MathSciNet  Google Scholar 

  41. Ding, W. et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2–VI3 van der Waals materials. Nat. Commun. 8, 14956 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cui, C. et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano. Lett. 18, 1253–1258 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Yuan, S. et al. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 10, 1775 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  45. Higashitarumizu, N. et al. Purely in-plane ferroelectricity in monolayer SnSat room temperature. Nat. Commun. 11, 2428 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang, W. et al. Gate-coupling-enabled robust hysteresis for nonvolatile memory and programmable rectifier in van der Waals ferroelectric heterojunctions. Adv. Mater. 32, 1908040 (2020).

    Article  CAS  Google Scholar 

  47. Gong, C., Kim, E. M., Wang, Y., Lee, G. & Zhang, X. Multiferroicity in atomic van der Waals heterostructures. Nat. Commun. 10, 2657 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  48. Dou, K., Du, W., Dai, Y., Huang, B. & Ma, Y. Two-dimensional magnetoelectric multiferroics in a MnSTe/In2Se3 heterobilayer with ferroelectrically controllable skyrmions. Phys. Rev. B 105, 205427 (2022).

    Article  ADS  CAS  Google Scholar 

  49. Huang, D., Choi, J., Shih, C.-K. & Li, X. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 17, 227–238 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Kim, K. et al. van der waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Craig, I.M. pyInterferometery (GitHub, 2023); https://github.com/bediakolab/pyInterferometry

  52. Savitzky, B. H. et al. py4dstem: a software package for four-dimensional scanning transmission electron microscopy data analysis. Microsc. Microanal. 27, 712–743 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Madsen, J. & Susi, T. The abtem code: transmission electron microscopy from first principles. ORE 1, 13015 (2021).

    Google Scholar 

  54. Van Winkle, M. & Bediako, D. Source data for “Engineering interfacial polarization switching in van der Waals multilayers” (Zenodo, 2024); https://doi.org/10.5281/zenodo.10697962

Download references

Acknowledgements

This work was supported by the US National Science Foundation (NSF) under award number DMR-2238196 (D.K.B.). M.V. acknowledges support from a University of California, Berkeley Philomathia Graduate Fellowship. I.M.C. acknowledges support from a National Defense Science and Engineering Graduate (NDSEG) Fellowship under contract FA9550-21-F-0003 sponsored by the Air Force Research Laboratory (AFRL), the Office of Naval Research (ONR) and the Army Research Office (ARO). Work at the Molecular Foundry, LBNL was supported by the Office of Science, Office of Basic Energy Sciences, of the US DOE under contract number DE-AC02-05CH11231. Other instrumentation used in this work was supported by grants from the Gordon and Betty Moore Foundation EPiQS Initiative (award number 10637, D.K.B.), the Canadian Institute for Advanced Research (CIFAR-Azrieli Global Scholar, award number GS21-011, D.K.B.) and the 3M Foundation through the 3M Non-Tenured Faculty Award (number 67507585, D.K.B.). K.W. and T.T. acknowledge support from the JSPS KAKENHI (grant numbers 20H00354 and 23H02052) and the World Premier International Research Center Initiative (WPI), MEXT, Japan.

Author information

Authors and Affiliations

Authors

Contributions

M.V.W. and D.K.B. conceived the study. M.V.W., N.D. and N.K. designed and fabricated the samples. M.V.W. and R.D. acquired TEM and 4D-STEM data. M.I. performed multislice simulations with input from I.M.C. I.M.C. wrote the code used for generation of colour-coded virtual DF images. T.T. and K.W. provided the bulk hBN crystals. M.V.W. processed and analysed the data. M.V.W. and D.K.B. wrote the manuscript with input from all coauthors.

Corresponding author

Correspondence to D. Kwabena Bediako.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Ondrej Dyck and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary sections 1–8, Figs. 1–16 and Tables 1 and 2.

Supplementary Video 1

DF-TEM video of an AtA′-type WSe2 trilayer during application of an out-of-plane electric field. The region outlined in yellow in the first frame was analysed in Fig. 2a,b. The region outlined in blue in the first frame was analysed in Fig. 3a,c,e. Images generated using the \([10{\bar1}0]\) Bragg reflection.

Supplementary Video 2

DF-TEM video of an AtA′-type WSe2 trilayer with heterostrain-induced polar domain walls during application of an out-of-plane electric field. Images generated using the \([10{\bar1}0]\) Bragg reflection and analysed in Fig. 2c–h and Fig. 3b,d,f–i. Specific regions of interest outlined in Supplementary Fig. 13.

Supplementary Video 3

DF-TEM video of an AtA′-type WSe2 trilayer with heterostrain-induced polar domain walls during two additional biasing cycles. Images generated using the \([10{\bar1}0]\) Bragg reflection and analysed in Fig. 3f. Specific regions of interest outlined in Supplementary Fig. 13. Images in Supplementary Videos 2 and 3 were collected on separate days, leading to a difference in sample tilt and change in observed domain contrast.

Supplementary Video 4

DF-TEM video of an AtA′-type WSe2 trilayer with heterostrain-induced polar domain walls during application of an out-of-plane electric field. Images generated using the \([{\bar 1}2{\bar 1}0]\) Bragg reflection and analysed in Fig. 2h. Specific regions of interest outlined in Supplementary Fig. 13.

Supplementary Video 5

DF-TEM video of a tAB′-type WSe2 trilayer during application of an out-of-plane electric field. The twisted trilayer region outlined in yellow in the first frame was analysed in Fig. 4a,b (TTL12, θ < 0.05°). The twisted bilayer region outlined in blue in the first frame was analysed in Fig. 4b (TBL, θ ≈ 0.31°). Images generated using the \([10{\bar1}0]\) Bragg reflection.

Supplementary Video 6

DF-TEM video of a tAB′-type WSe2 trilayer during application of an out-of-plane electric field over three cycles. The region outlined in yellow in the first frame was analysed in Fig. 4c–g. The region outlined in blue in the first frame was analysed in Fig. 4b (TTL23, θ ≈ 0.25°). Images generated using the \([1{\bar 1}00]\) Bragg reflection. Images in cycle 1 and 2/3 were collected on separate days, leading to a difference in sample tilt and change in observed domain contrast.

Supplementary Video 7

DF-TEM video of twisted bilayer (TBL) WSe2 during application of an out-of-plane electric field. The region outlined in yellow in the first frame was analysed in Fig. 4b (TBL, θ ≈ 0.03°). Images generated using the \([10{\bar1}0]\) Bragg reflection.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Winkle, M., Dowlatshahi, N., Khaloo, N. et al. Engineering interfacial polarization switching in van der Waals multilayers. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01642-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01642-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing