Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide forward genetic screening to identify receptors and proteins mediating nanoparticle uptake and intracellular processing

Abstract

Understanding how cells process nanoparticles is crucial to optimize nanomedicine efficacy. However, characterizing cellular pathways is challenging, especially if non-canonical mechanisms are involved. In this Article a genome-wide forward genetic screening based on insertional mutagenesis is applied to discover receptors and proteins involved in the intracellular accumulation (uptake and intracellular processing) of silica nanoparticles. The nanoparticles are covered by a human serum corona known to target the low-density lipoprotein receptor (LDLR). By sorting cells with reduced nanoparticle accumulation and deep sequencing after each sorting, 80 enriched genes are identified. We find that, as well as LDLR, the scavenger receptor SCARB1 also mediates nanoparticle accumulation. Additionally, heparan sulfate acts as a specific nanoparticle receptor, and its role varies depending on cell and nanoparticle type. Furthermore, some of the identified targets affect nanoparticle trafficking to the lysosomes. These results show the potential of genetic screening to characterize nanoparticle pathways. Additionally, they indicate that corona-coated nanoparticles are internalized via multiple receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mutagenized cells with reduced nanoparticle accumulation are enriched after multiple selections.
Fig. 2: Time-resolved analysis of enriched genes identified in multiple sorts.
Fig. 3: Effect of the identified targets on nanoparticle intracellular accumulation and adhesion.
Fig. 4: Role of receptors LDLR and SCARB1, and heparan sulfate, in nanoparticle intracellular accumulation.
Fig. 5: Role of heparan sulfate and apolipoprotein receptors in the intracellular accumulation of different nanoparticles.
Fig. 6: Effect of the identified targets in nanoparticle trafficking to the lysosomes.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and its Supplementary Information and Supplementary Data. The raw sequencing data are deposited at the European Nucleotide Archive under accession code PRJEB71925. The complete analysis of the sequencing results is included as Supplementary Data 1. The raw imaging and nanoparticle physicochemical characterization data are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The code to analyse the sequencing data generated in this study is available at https://github.com/Vityay/NanoScreen.

References

  1. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chou, L. Y. T., Ming, K. & Chan, W. C. W. Strategies for the intracellular delivery of nanoparticles. Chem. Soc. Rev. 40, 233–245 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Duncan, R. & Richardson, S. C. W. Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges. Mol. Pharm. 9, 2380–2402 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Iversen, T.-G., Skotland, T. & Sandvig, K. Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6, 176–185 (2011).

    Article  CAS  Google Scholar 

  5. Rennick, J. J., Johnston, A. P. R. & Parton, R. G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Francia, V. et al. Corona composition can affect the mechanisms cells use to internalize nanoparticles. ACS Nano 13, 11107–11121 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Iversen, T. G., Frerker, N. & Sandvig, K. Uptake of ricinB-quantum dot nanoparticles by a macropinocytosis-like mechanism. J. Nanobiotechnol. 10, 33 (2012).

    Article  CAS  Google Scholar 

  8. Sharma, S., Bartholdson, S. J., Couch, A. C. M., Yusa, K. & Wright, G. J. Genome-scale identification of cellular pathways required for cell surface recognition. Genome Res. 28, 1372–1382 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Collinet, C. et al. Systems survey of endocytosis by multiparametric image analysis. Nature 464, 243–249 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Carette, J. E. et al. Haploid genetic screens in human cells identify host factors used by pathogens. Science 326, 1231–1235 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Navarro Negredo, P. et al. Contribution of the clathrin adaptor AP-1 subunit µ1 to acidic cluster protein sorting. J. Cell Biol. 216, 2927–2943 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jae, L. T. et al. Deciphering the glycosylome of dystroglycanopathies using haploid screens for lassa virus entry. Science 340, 479–483 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duncan, L. M. et al. Fluorescence-based phenotypic selection allows forward genetic screens in haploid human cells. PLoS ONE 7, e39651 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Davis, E. M. et al. Comparative haploid genetic screens reveal divergent pathways in the biogenesis and trafficking of glycophosphatidylinositol-anchored proteins. Cell Rep. 11, 1727–1736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luteijn, R. D. et al. A genome-wide haploid genetic screen identifies heparan sulfate-associated genes and the macropinocytosis modulator TMED10 as factors supporting vaccinia virus infection. J. Virol. 93, e02160-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Carette, J. E. et al. Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature 477, 340–343 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ngo, W. et al. Identifying cell receptors for the nanoparticle protein corona using genome screens. Nat. Chem. Biol. 18, 1023–1031 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Riblett, A. M. et al. A haploid genetic screen identifies heparan sulfate proteoglycans supporting Rift Valley fever virus infection. J. Virol. 90, 1414–1423 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pillay, S. et al. An essential receptor for adeno-associated virus infection. Nature 530, 108–112 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lara, S. et al. Identification of receptor binding to the biomolecular corona of nanoparticles. ACS Nano 11, 1884–1893 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Liu, K. et al. Multiomics analysis of naturally efficacious lipid nanoparticle coronas reveals high-density lipoprotein is necessary for their function. Nat. Commun. 14, 4007 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rees, P., Wills, J. W., Brown, M. R., Barnes, C. M. & Summers, H. D. The origin of heterogeneous nanoparticle uptake by cells. Nat. Commun. 10, 2341 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  24. Panet, E. et al. The interface of nanoparticles with proliferating mammalian cells. Nat. Nanotechnol. 12, 598–600 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Åberg, C., Piattelli, V., Montizaan, D. & Salvati, A. Sources of variability in nanoparticle uptake by cells. Nanoscale 13, 17530–17546 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Christianson, H. C., Svensson, K. J., van Kuppevelt, T. H., Li, J. P. & Belting, M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc. Natl Acad. Sci. USA 110, 17380–17385 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Joshi, B. S. & Zuhorn, I. S. Heparan sulfate proteoglycan-mediated dynamin-dependent transport of neural stem cell exosomes in an in vitro blood–brain barrier model. Eur. J. Neurosci. 53, 706–719 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Panarella, A. et al. A systematic high-content screening microscopy approach reveals key roles for Rab33b, OATL1 and Myo6 in nanoparticle trafficking in HeLa cells. Sci. Rep. 6, 28865 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hofmann, D. et al. Mass spectrometry and imaging analysis of nanoparticle-containing vesicles provide a mechanistic insight into cellular trafficking. ACS Nano 8, 10077–10088 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Shapero, K. et al. Time and space resolved uptake study of silica nanoparticles by human cells. Mol. BioSyst. 7, 371–378 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Turnbull, J., Powell, A. & Guimond, S. Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell Biol. 11, 75–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Martinez, P. et al. Macrophage polarization alters the expression and sulfation pattern of glycosaminoglycans. Glycobiology 25, 502–513 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Thomas, M. & Klibanov, A. M. Non-viral gene therapy: polycation-mediated DNA delivery. Appl. Microbiol. Biotechnol. 62, 27–34 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Favretto, M. E., Wallbrecher, R., Schmidt, S., van de Putte, R. & Brock, R. Glycosaminoglycans in the cellular uptake of drug delivery vectors—bystanders or active players? J. Control. Release 180, 81–90 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Olivieri, P. H., Jesus, M. B., Nader, H. B., Justo, G. Z. & Sousa, A. A. Cell-surface glycosaminoglycans regulate the cellular uptake of charged polystyrene nanoparticles. Nanoscale 14, 7350–7363 (2022).

    Article  PubMed  Google Scholar 

  36. Christianson, H. C. & Belting, M. Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol. 35, 51–55 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, Q. et al. Heparan sulfate assists SARS-CoV-2 in cell entry and can be targeted by approved drugs in vitro. Cell Discov. 6, 80 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stanford, K. I. et al. Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. J. Clin. Invest. 119, 3236–3245 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Williams, K. J. & Fuki, I. V. Cell-surface heparan sulfate proteoglycans: dynamic molecules mediating ligand catabolism. Curr. Opin. Lipidol. 8, 253–262 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Shen, W. J., Asthana, S., Kraemer, F. B. & Azhar, S. Scavenger receptor B type 1: expression, molecular regulation, and cholesterol transport function. J. Lipid Res. 59, 1114–1131 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kolset, S. O. & Salmivirta, M. Cell surface heparan sulfate proteoglycans and lipoprotein metabolism. Cell. Mol. Life Sci. 56, 857–870 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Lesniak, A. et al. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J. Am. Chem. Soc. 135, 1438–1444 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Yang, K., Mesquita, B., Horvatovich, P. & Salvati, A. Tuning liposome composition to modulate corona formation in human serum and cellular uptake. Acta Biomater. 106, 314–327 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ritz, S. et al. Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules 16, 1311–1321 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Jones, A. L., Hulett, M. D. & Parish, C. R. Histidine-rich glycoprotein binds to cell-surface heparan sulfate via its N-terminal domain following Zn2+ chelation. J. Biol. Chem. 279, 30114–30122 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the European Research Council (ERC) as part of the European Union’s Horizon 2020 research and innovation programme under grant agreement 637614 (A.S.) (NanoPaths). We acknowledge T. Brummelkamp (Netherlands Cancer Institute, Amsterdam, The Netherlands) for providing the plasmids for retroviral mutagenesis, and J. Carette (Stanford University, Stanford, CA, USA) for sharing detailed information on the mutagenesis and LAM-PCR methods. We also thank H. Haisma (GRIP) and J. van den Born for suggestions on retroviral production and heparan sulfate detection respectively, P. Ettema (GRIP) and K. Hoekstra-Wakker (ERIBA) for technical assistance with bacterial culture and preparation of samples for next generation sequencing, respectively, and K. Yang (GRIP) for liposome preparation. E. Frijlink and W. Hinrichs (GRIP) are acknowledged for access to nanoparticle tracking analysis (NTA), H. van der Mei (University Medical Center Groningen) for access to dynamic light scattering (DLS) and Herman Sillje (University Medical Center Groningen) for access to epifluorescence microscopy. FACS was performed at the flow cytometry facility of the University Medical Center Groningen. Confocal fluorescence imaging was performed at the imaging facility of the University Medical Center Groningen.

Author information

Authors and Affiliations

Authors

Contributions

D.M. designed and performed all experiments for the forward genetic screening (from the production of the viral particles, the preparation of the mutagenized library and the selection of the cells with reduced nanoparticle intracellular accumulation to the LAM-PCR preparation for sequencing, pathway analysis on the results and all their validation with the exceptions specified below), analysed and interpreted the data and wrote the manuscript. R.B. performed nanoparticle intracellular accumulation and adhesion kinetics in silenced cells, with competitors and after inhibition of SCARB1, as well as the imaging and quantification of nanoparticle colocalization with lysosomes, and tested the panel of targets in A549 cells and with the negatively charged liposomes together with contributions by C.R.-S. and analysed and interpreted these data. In addition, C.R.S. also assisted in cell sorting for forward genetic screening and performed some of the digestion and competition experiments with the panel of nanoparticles. S.d.W. performed nanoparticle tracking analysis experiments and analysis. C.Å. contributed to the analysis of the results. V.G. performed the mapping of the sequenced inserts to the genome and supervised the analysis of the sequencing results. D.C.J.S. supervised the LAM-PCR-based next-generation sequencing library preparation and sequencing. A.S. designed and supervised the whole project, analysed and interpreted the data and wrote the manuscript. All authors have read and revised the manuscript.

Corresponding author

Correspondence to Anna Salvati.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–20, Tables 1–6 and References.

Reporting Summary

Supplementary Data 1

Number of insertions per gene before and after each selection of mutagenized HAP1 cells with reduced nanoparticle intracellular accumulation (up to six sorts).

Supplementary Data 2

Description of the role of the 80 enriched genes identified by time-resolved forward genetic screening.

Supplementary Data 3

Source data for Supplementary Figures.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montizaan, D., Bartucci, R., Reker-Smit, C. et al. Genome-wide forward genetic screening to identify receptors and proteins mediating nanoparticle uptake and intracellular processing. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01629-x

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research