Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA delivery

Abstract

Cells that were previously described as homogeneous are composed of subsets with distinct transcriptional states. However, it remains unclear whether this cell heterogeneity influences the efficiency with which lipid nanoparticles (LNPs) deliver messenger RNA therapies in vivo. To test the hypothesis that cell heterogeneity influences LNP-mediated mRNA delivery, we report here a new multiomic nanoparticle delivery system called single-cell nanoparticle targeting-sequencing (SENT-seq). SENT-seq quantifies how dozens of LNPs deliver DNA barcodes and mRNA into cells, the subsequent protein production and the transcriptome, with single-cell resolution. Using SENT-seq, we have identified cell subtypes that exhibit particularly high or low LNP uptake as well as genes associated with those subtypes. The data suggest that cell subsets have distinct responses to LNPs that may affect mRNA therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SENT-seq uses orthogonal capture sequences to generate tunable multiomic readouts.
Fig. 2: In vivo multiomic single-cell readouts of the transcriptome, functional LNP-mediated mRNA delivery and LNP-mediated DNA barcode delivery.
Fig. 3: Cell subsets differentially uptake LNPs.
Fig. 4: Endothelial cell subtypes show transcriptional differences that may dictate LNP-mediated mRNA delivery.
Fig. 5: Chemically distinct LNPs exhibit different tropism within the liver microenvironment.

Similar content being viewed by others

Data availability

All raw sequencing data (GEO: GSE186395) are available online. All other data are provided in the main text or the Supplementary Information.

Code availability

The custom code used is available at https://github.com/Jack-Feldman/barcode_count.

References

  1. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    Article  CAS  Google Scholar 

  2. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article  CAS  Google Scholar 

  3. Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  CAS  Google Scholar 

  4. Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    Article  CAS  Google Scholar 

  5. Translate Bio Announces Results from Second Interim Data Analysis from Ongoing Phase 1/2 Clinical Trial of MRT5005 in Patients with Cystic Fibrosis (CF) (Translate Bio, 2021); https://investors.translate.bio/news-releases/news-release-details/translate-bio-announces-results-second-interim-data-analysis

  6. Translate Bio Announces Pipeline Program Update (Translate Bio, 2019); https://investors.translate.bio/news-releases/news-release-details/translate-bio-announces-pipeline-program-update

  7. Arcturus Therapeutics Announces First Quarter 2021 Company Overview and Financial Results and Provides New Clinical Data (Arcturus Therapeutics, 2021); https://ir.arcturusrx.com/news-releases/news-release-details/arcturus-therapeutics-announces-first-quarter-2021-company

  8. Altinoglu, S., Wang, M. & Xu, Q. Combinatorial library strategies for synthesis of cationic lipid-like nanoparticles and their potential medical applications. Nanomedicine 10, 643–657 (2015).

    Article  CAS  Google Scholar 

  9. Lokugamage, M. P., Sago, C. D. & Dahlman, J. E. Testing thousands of nanoparticles in vivo using DNA barcodes. Curr. Opin. Biomed. Eng. 7, 1–8 (2018).

    Article  Google Scholar 

  10. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  Google Scholar 

  11. Sago, C. D. et al. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc. Natl Acad. Sci. USA 115, E9944–E9952 (2018).

    Article  CAS  Google Scholar 

  12. Kauffman, K. J. et al. Rapid, single-cell analysis and discovery of vectored mRNA transfection in vivo with a loxP-flanked tdTomato reporter mouse. Mol. Ther. Nucleic Acids 10, 55–63 (2018).

    Article  CAS  Google Scholar 

  13. Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).

    Article  CAS  Google Scholar 

  14. Veiga, N. et al. Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes. Nat. Commun. 9, 4493 (2018).

    Article  CAS  Google Scholar 

  15. Paunovska, K. et al. Nanoparticles containing oxidized cholesterol deliver mRNA to the liver microenvironment at clinically relevant doses. Adv. Mater. 31, e1807748 (2019).

    Article  CAS  Google Scholar 

  16. Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).

    Article  CAS  Google Scholar 

  17. Sago, C. D. et al. Augmented lipid-nanoparticle-mediated in vivo genome editing in the lungs and spleen by disrupting Cas9 activity in the liver. Nat. Biomed. Eng. 6, 157–167 (2022).

    Article  CAS  Google Scholar 

  18. Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010).

    Article  CAS  Google Scholar 

  19. Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    Article  CAS  Google Scholar 

  20. Nair, J. K. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 136, 16958–16961 (2014).

    Article  CAS  Google Scholar 

  21. Balwani, M. et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N. Engl. J. Med. 382, 2289–2301 (2020).

    Article  CAS  Google Scholar 

  22. Garrelfs, S. F. et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N. Engl. J. Med. 384, 1216–1226 (2021).

    Article  CAS  Google Scholar 

  23. Ray, K. K. et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N. Engl. J. Med. 382, 1507–1519 (2020).

    Article  CAS  Google Scholar 

  24. Alnylam Announces U.S. Food and Drug Administration Acceptance of New Drug Application for Investigational Vutrisiran for the Treatment of the Polyneuropathy of Hereditary ATTR Amyloidosis (Alnylam, 2021); https://investors.alnylam.com/press-release?id=25811

  25. Pasi, K. J. et al. Targeting of antithrombin in hemophilia A or B with RNAi therapy. N. Engl. J. Med. 377, 819–828 (2017).

    Article  CAS  Google Scholar 

  26. Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022).

    Article  CAS  Google Scholar 

  27. Patel, S. et al. Boosting intracellular delivery of lipid nanoparticle-encapsulated mRNA. Nano Lett. 17, 5711–5718 (2017).

    Article  CAS  Google Scholar 

  28. Paunovska, K. et al. Increased PIP3 activity blocks nanoparticle mRNA delivery. Sci. Adv. 6, eaba5672 (2020).

    Article  CAS  Google Scholar 

  29. Lokugamage, M. P. et al. Mild innate immune activation overrides efficient nanoparticle-mediated RNA delivery. Adv. Mater. 32, e1904905 (2019).

    Article  CAS  Google Scholar 

  30. Gilleron, J. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31, 638–646 (2013).

    Article  CAS  Google Scholar 

  31. Wittrup, A. et al. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat. Biotechnol. 33, 870–876 (2015).

    Article  CAS  Google Scholar 

  32. Paunovska, K. et al. A direct comparison of in vitro and in vivo nucleic acid delivery mediated by hundreds of nanoparticles reveals a weak correlation. Nano Lett. 18, 2148–2157 (2018).

    Article  CAS  Google Scholar 

  33. Katzenelenbogen, Y. et al. Coupled scRNA-seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell 182, 872–885 (2020).

    Article  CAS  Google Scholar 

  34. Papalexi, E. & Satija, R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat. Rev. Immunol. 18, 35–45 (2018).

    Article  CAS  Google Scholar 

  35. Cherry, C. et al. Computational reconstruction of the signalling networks surrounding implanted biomaterials from single-cell transcriptomics. Nat. Biomed. Eng. 5, 1228–1238 (2021).

    Article  CAS  Google Scholar 

  36. Paunovska, K. et al. Analyzing 2000 in vivo drug delivery data points reveals cholesterol structure impacts nanoparticle delivery. ACS Nano 12, 8341–8349 (2018).

    Article  CAS  Google Scholar 

  37. Sago, C. D. et al. Nanoparticles that deliver RNA to bone marrow identified by in vivo directed evolution. J. Am. Chem. Soc. 140, 17095–17105 (2018).

    Article  CAS  Google Scholar 

  38. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  Google Scholar 

  39. Chen, D. et al. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J. Am. Chem. Soc. 134, 6948–6951 (2012).

    Article  CAS  Google Scholar 

  40. Tiwari, P. M. et al. Engineered mRNA-expressed antibodies prevent respiratory syncytial virus infection. Nat. Commun. 9, 3999 (2018).

    Article  CAS  Google Scholar 

  41. Sago, C. D. et al. Modifying a commonly expressed endocytic receptor retargets nanoparticles in vivo. Nano Lett. 18, 7590–7600 (2018).

    Article  CAS  Google Scholar 

  42. Zhang, Y., Sun, C., Wang, C., Jankovic, K. E. & Dong, Y. Lipids and lipid derivatives for RNA delivery. Chem. Rev. 121, 12181–12277 (2021).

    Article  CAS  Google Scholar 

  43. Han, X. et al. Mapping the mouse cell atlas by Microwell-seq. Cell 172, 1091–1107 (2018).

    Article  CAS  Google Scholar 

  44. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article  CAS  Google Scholar 

  45. Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. Cell 180, 764–779 (2020).

    Article  CAS  Google Scholar 

  46. Huang, D., Sherman, B. & Lempicki, R. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  47. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  CAS  Google Scholar 

  48. Szklarczyk, D. et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 (2017).

    Article  CAS  Google Scholar 

  49. Malumbres, M. Cyclin-dependent kinases. Genome Biol. 15, 122–122 (2014).

    Article  Google Scholar 

  50. Fan, Z. et al. CDK13 cooperates with CDK12 to control global RNA polymerase II processivity. Sci. Adv. 6, eaaz5041 (2020).

    Article  CAS  Google Scholar 

  51. Hatit, M. Z. C. et al. Species-dependent in vivo mRNA delivery and cellular responses to nanoparticles. Nat. Nanotechnol. 17, 310–318 (2022).

    Article  CAS  Google Scholar 

  52. Ben-Moshe, S. et al. Spatial sorting enables comprehensive characterization of liver zonation. Nat. Metab. 1, 899–911 (2019).

    Article  CAS  Google Scholar 

  53. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    Article  CAS  Google Scholar 

  54. Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363–369 (2014).

    Article  CAS  Google Scholar 

  55. Ho, D. W.-H. et al. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat. Commun. 12, 3684 (2021).

    Article  CAS  Google Scholar 

  56. Zhang, Q. et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 179, 829–845 (2019).

    Article  CAS  Google Scholar 

  57. Herrmann, I. K., Wood, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 16, 748–759 (2021).

    Article  CAS  Google Scholar 

  58. Nooraei, S. et al. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnology 19, 59 (2021).

    Article  CAS  Google Scholar 

  59. Banskota, S. et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 185, 250–265 (2022).

    Article  CAS  Google Scholar 

  60. Segel, M. et al. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 373, 882–889 (2021).

    Article  CAS  Google Scholar 

  61. Dahlman, J. E. et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. USA 114, 2060–2065 (2017).

    Article  CAS  Google Scholar 

  62. Paunovska, K. et al. Nanoparticles containing oxidized cholesterol deliver mRNA to the liver microenvironment at clinically relevant doses. Adv. Mater. 31, 1807748 (2019).

    Article  CAS  Google Scholar 

  63. Parekh, S., Ziegenhain, C., Vieth, B., Enard, W. & Hellmann, I. zUMIs-a fast and flexible pipeline to process RNA sequencing data with UMIs. GigaScience 7, giy059 (2018).

    Article  CAS  Google Scholar 

  64. Srivastava, A., Malik, L., Smith, T., Sudbery, I. & Patro, R. Alevin efficiently estimates accurate gene abundances from dscRNA-seq data. Genome Biol. 20, 1–16 (2019).

    Article  CAS  Google Scholar 

  65. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Tiegren for copyediting the manuscript. Funding was provided by the National Institutes of Health (grant nos. UG3-TR002855 (J.E.D. and P.J.S.) and R01DE026941 (J.E.D.)).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: C.D., K.P. and J.E.D. Methodology: C.D., K.P. and J.E.D. Investigation: C.D., K.P., E.S.E., D.L., A.J.D.S.S., H.N., M.Z.C.H., M.P.L., Y.K., H.E.P., P.J.S. and J.E.D. Visualization: C.D., K.P. and J.E.D. Funding acquisition: J.E.D. and P.J.S. Project administration: J.E.D. Supervision: P.J.S. and J.E.D. Writing—original draft: C.D., K.P. and J.E.D. Writing—review and editing: C.D., K.P., E.S.E., D.L., A.J.D.S.S., H.N., M.Z.C.H., M.P.L., Y.K., H.E.P., P.J.S. and J.E.D.

Corresponding author

Correspondence to James E. Dahlman.

Ethics declarations

Competing interests

C.D., K.P. and J.E.D. have filed intellectual property related to SENT-seq. J.E.D. is an advisor for GV. All other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrowolski, C., Paunovska, K., Schrader Echeverri, E. et al. Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA delivery. Nat. Nanotechnol. 17, 871–879 (2022). https://doi.org/10.1038/s41565-022-01146-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01146-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research