Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photothermal therapy of tuberculosis using targeting pre-activated macrophage membrane-coated nanoparticles

Abstract

Conventional antibiotics used for treating tuberculosis (TB) suffer from drug resistance and multiple complications. Here we propose a lesion–pathogen dual-targeting strategy for the management of TB by coating Mycobacterium-stimulated macrophage membranes onto polymeric cores encapsulated with an aggregation-induced emission photothermal agent that is excitable with a 1,064 nm laser. The coated nanoparticles carry specific receptors for Mycobacterium tuberculosis, which enables them to target tuberculous granulomas and internal M. tuberculosis simultaneously. In a mouse model of TB, intravenously injected nanoparticles image individual granulomas in situ in the lungs via signal emission in the near-infrared region IIb, with an imaging resolution much higher than that of clinical computed tomography. With 1,064 nm laser irradiation from outside the thoracic cavity, the photothermal effect generated by these nanoparticles eradicates the targeted M. tuberculosis and alleviates pathological damage and excessive inflammation in the lungs, resulting in a better therapeutic efficacy compared with a combination of first-line antibiotics. This precise photothermal modality that uses dual-targeted imaging in the near-infrared region IIb demonstrates a theranostic strategy for TB management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A precise theranostic strategy for TB based on Mycobacterium pre-activated macrophage membrane-coated photothermal nanoparticles.
Fig. 2: Transcriptomic analysis and characterization of M. marinum-stimulated macrophages.
Fig. 3: Characterization of TPE-BT-BBTD and BBTD@PM NPs.
Fig. 4: In vitro targeting and antibacterial activity of BBTD@PM NPs against M. tuberculosis.
Fig. 5: Targeted NIR-IIb imaging of tuberculous granulomas and internal M. tuberculosis with BBTD@PM NPs.
Fig. 6: Antibacterial and anti-inflammatory effects of BBTD@PM NPs in mice with H37Ra-induced pulmonary TB.

Similar content being viewed by others

Data availability

The main data that support the findings of this study are available within the Article and its Supplementary Information. There are no data from third-party or publicly available datasets. The transcriptome raw data used in this paper were deposited in the NCBI Sequence Read Archive under accession number PRJNA1031148. Source data are provided with this paper. Other datasets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Global Tuberculosis Report 2022 (World Health Organization, 2022).

  2. Kislitsyna, N. A. Comparative evaluation of rifampicin and isoniazid penetration into the pathological foci of the lungs in tuberculosis patients. Probl. Tuberk. 4, 55–57 (1985).

    Google Scholar 

  3. Khan, A. et al. Genetic variants and drug efficacy in tuberculosis: a step toward personalized therapy. Glob. Med. Genet. 9, 90–96 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tostmann, A. et al. Antituberculosis drug-induced hepatotoxicity: concise up-to-date review. J. Gastroenterol. Hepatol. 23, 192–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Mane, S. R. et al. Increased bioavailability of rifampicin from stimuli-responsive smart nano carrier. ACS Appl. Mater. Interfaces 6, 16895–16902 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Mei, Q. et al. Formulation and in vitro characterization of rifampicin-loaded porous poly (ε-caprolactone) microspheres for sustained skeletal delivery. Drug Des. Devel. Ther. 12, 1533–1544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prabhu, P. et al. Mannose-conjugated chitosan nanoparticles for delivery of rifampicin to osteoarticular tuberculosis. Drug Deliv. Transl. Res. 11, 1509–1519 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Fenaroli, F. et al. Enhanced permeability and retention-like extravasation of nanoparticles from the vasculature into tuberculosis granulomas in zebrafish and mouse models. ACS Nano 12, 8646–8661 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Fang, R. H., Kroll, A. V., Gao, W. & Zhang, L. Cell membrane coating nanotechnology. Adv. Mater. 30, e1706759 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Engering, A. J. et al. The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells. Eur. J. Immunol. 27, 2417–2425 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Oldenborg, P. A. et al. Role of CD47 as a marker of self on red blood cells. Science 288, 2051–2054 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Rodriguez, P. L. et al. Minimal ‘self’ peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339, 971–975 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Stevens, M. M. & George, J. H. Exploring and engineering the cell surface interface. Science 310, 1135–1138 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Jafari, A., Nagheli, A., Foumani, A. A., Soltani, B. & Goswami, R. The role of metallic nanoparticles in inhibition of Mycobacterium tuberculosis and enhances phagosome maturation into the infected macrophage. Oman Med. J. 35, e194 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maphasa, R. E., Meyer, M. & Dube, A. The macrophage response to Mycobacterium tuberculosis and opportunities for autophagy inducing nanomedicines for tuberculosis therapy. Front. Cell. Infect. Microbiol. 10, 618414 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Shi, L., Jiang, Q., Bushkin, Y., Subbian, S. & Tyagi, S. Biphasic dynamics of macrophage immunometabolism during Mycobacterium tuberculosis infection. mBio 10, e02550–18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fabriek, B. O. et al. The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Blood 113, 887–892 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Matsubara, V. H. et al. Probiotic bacteria alter pattern-recognition receptor expression and cytokine profile in a human macrophage model challenged with Candida albicans and lipopolysaccharide. Front. Microbiol. 8, 2280 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nicolaou, G., Goodall, A. H. & Erridge, C. Diverse bacteria promote macrophage foam cell formation via Toll-like receptor-dependent lipid body biosynthesis. J. Atheroscler. Thromb. 19, 137–148 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Bin, L. et al. Antiviral and anti-inflammatory treatment with multifunctional alveolar macrophage-like nanoparticles in a surrogate mouse model of COVID-19. Adv. Sci. (Weinh.) 8, 2003556 (2021).

    Google Scholar 

  21. Wu, H. H., Zhou, Y., Tabata, Y. & Gao, J. Q. Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic. J. Control. Release 294, 102–113 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Carlsson, F. et al. Host-detrimental role of Esx-1-mediated inflammasome activation in mycobacterial infection. PLoS Pathog. 6, e1000895 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Takaki, K., Davis, J. M., Winglee, K. & Ramakrishnan, L. Evaluation of the pathogenesis and treatment of Mycobacterium marinum infection in zebrafish. Nat. Protoc. 8, 1114–1124 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637–650 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Taylor, P. R. et al. Macrophage receptors and immune recognition. Annu. Rev. Immunol. 23, 901–944 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, M. et al. A versatile 980 nm absorbing aggregation-induced emission luminogen for NIR-II imaging-guided synergistic photo-immunotherapy against advanced pancreatic cancer. Adv. Funct. Mater. 32, 2205371 (2022).

    Article  CAS  Google Scholar 

  27. Tang, M. et al. Near-infrared excited orthogonal emissive upconversion nanoparticles for imaging-guided on-demand therapy. ACS Nano 13, 10405–10418 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Xu, C., Jiang, Y., Han, Y., Pu, K. & Zhang, R. A polymer multicellular nanoengager for synergistic NIR-II photothermal immunotherapy. Adv. Mater. 33, e2008061 (2021).

    Article  PubMed  Google Scholar 

  29. Goñi, F. M. The basic structure and dynamics of cell membranes: an update of the Singer–Nicolson model. Biochim. Biophys. Acta Biomembr. 1838, 1467–1476 (2022).

    Article  Google Scholar 

  30. Ramasamy, M., Lee, S. S., Yi, D. K. & Kim, K. Magnetic, optical gold nanorods for recyclable photothermal ablation of bacteria. J. Mater. Chem. B 2, 981–988 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Yang, Y. et al. Supramolecular radical anions triggered by bacteria in situ for selective photothermal therapy. Angew. Chem. Int. Ed. 56, 16239–16242 (2017).

    Article  CAS  Google Scholar 

  32. Zhang, J. et al. Photothermal lysis of pathogenic bacteria by platinum nanodots decorated gold nanorods under near infrared irradiation. J. Hazard. Mater. 342, 121–130 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Hessel, C. M. et al. Copper selenide nanocrystals for photothermal therapy. Nano Lett. 11, 2560–2566 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Li, Y. et al. Novel NIR-II organic fluorophores for bioimaging beyond 1550 nm. Chem. Sci. 11, 2621–2626 (2020).

    Article  Google Scholar 

  35. Wang, J. et al. Brain-targeted aggregation-induced-emission nanoparticles with near-infrared imaging at 1550 nm boosts orthotopic glioblastoma theranostics. Adv. Mater. 34, e2106082 (2022).

    Article  PubMed  Google Scholar 

  36. Liu, S. et al. Incorporation of planar blocks into twisted skeletons: boosting brightness of fluorophores for bioimaging beyond 1500 nanometer. ACS Nano 14, 14228–14239 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Liu, Y. et al. One-dimensional Fe2P acts as a Fenton agent in response to NIR II light and ultrasound for deep tumor synergetic theranostics. Angew. Chem. Int. Ed. 58, 2407–2412 (2019).

    Article  CAS  ADS  Google Scholar 

  38. Miao, W. et al. A versatile 980 nm absorbing aggregation-induced emission luminogen for NIR-II imaging-guided synergistic photo-immunotherapy against advanced pancreatic cancer. Adv. Funct. Mater. 32, 2203571 (2022).

    Google Scholar 

  39. Yamamoto, T., Takiwaki, H., Arase, S. & Ohshima, H. Derivation and clinical application of special imaging by means of digital cameras and ImageJ freeware for quantification of erythema and pigmentation. Skin Res. Technol. 14, 26–34 (2008).

  40. Mitteer, D. R., Greer, B. D., Fisher, W. W. & Cohrs, V. L. Teaching behavior technicians to create publication-quality, single-case design graphs in GraphPad prism 7. J. Appl. Behav. Anal. 51, 998–1010 (2018).

Download references

Acknowledgements

This research was funded by the National Key Research and Development Program of China (2021YFC2302200, Y.L.), the National Natural Science Foundation of China (82322042, 82272248 and 81972019, Y.L.; 82102360, Y.W.), the China Postdoctoral Science Foundation (2022M720730, B.L.), the Natural Science Foundation of Guangdong Province for Distinguished Young Scholars (2022B1515020089, Y.L.), the Basic and Applied Basic Research Foundation of Guangdong Province (2021A1515110209 and 2022A1515140080, B.L.; 2020A1515110529, Y.W.), the Comprehensive Research Project of the National Natural Science Foundation of China (82241059, J. Zheng), the Zhongnanshan Medical Foundation of Guangdong Province (ZNSA-2021012, Y.L.) and the Training project of the National Science Foundation for Outstanding/Distinguished Young Scholars of Southern Medical University (C620PF0217, Y.L.).

Author information

Authors and Affiliations

Authors

Contributions

B.L., W.W., L.Z., Y.W. and Y.L. designed the research. B.L., W.W., L.Z., Y.W., X.L., D.Y., Q.G., Y.Y., J. Zhang, Y.F., J. Zheng, B.S., J.W. and H.W. performed the research. D.W. and B.Z.T. provided professional support for animal studies. All authors analysed and interpreted the data. B.L., W.W., L.Z. and Y.W. wrote the paper.

Corresponding authors

Correspondence to Dong Wang, Ben Zhong Tang or Yuhui Liao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–37, Table 1 and Discussions.

Reporting Summary

Supplementary Video 1

Time-dependent NIR-IIb imaging of a mouse with TB in a supine position after intravenous injection of BBTD@PM NPs.

Supplementary Data 1

Statistical source data for Supplementary Figs. 1, 2, 7, 12–14, 16–20, 22, 24 and 32–35.

Supplementary Data 2

ChemDraw file for the synthetic route to TPE-BT-BBTD.

Source data

Source Data Fig. 2

Unprocessed western blots.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Unprocessed western blots.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Wang, W., Zhao, L. et al. Photothermal therapy of tuberculosis using targeting pre-activated macrophage membrane-coated nanoparticles. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01618-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01618-0

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research