Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alternative Z-genome biosynthesis pathway shows evolutionary progression from Archaea to phage

Abstract

Many bacteriophages evade bacterial immune recognition by substituting adenine with 2,6-diaminopurine (Z) in their genomes. The Z-genome biosynthetic pathway involves PurZ that belongs to the PurA (adenylosuccinate synthetase) family and bears particular similarity to archaeal PurA. However, how the transition of PurA to PurZ occurred during evolution is not clear; recapturing this process may shed light on the origin of Z-containing phages. Here we describe the computer-guided identification and biochemical characterization of a naturally existing PurZ variant, PurZ0, which uses guanosine triphosphate as the phosphate donor rather than the ATP used by PurZ. The atomic resolution structure of PurZ0 reveals a guanine nucleotide binding pocket highly analogous to that of archaeal PurA. Phylogenetic analyses suggest PurZ0 as an intermediate during the evolution of archaeal PurA to phage PurZ. Maintaining the balance of different purines necessitates further evolvement of guanosine triphosphate-using PurZ0 to ATP-using PurZ in adaptation to Z-genome life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SSN and substrate-binding site analysis of PurZ and its variants.
Fig. 2: GpPurZ0 enzyme activity assay.
Fig. 3: ESI-MS/MS analyses of the GpPurZ0-EcPurB reactions.
Fig. 4: GTP or ATP active site comparison between GpPurZ0, VpPurZ and PhPurA.
Fig. 5: Maximum-likelihood tree of PurA, PurZ and PurZ0.

Similar content being viewed by others

Data availability

The coordinates and structure of GpPurZ0 in complex with GDP and phosphate have been deposited in the PDB under accession no. 7VF6. Other data (for example, bioinformatics) have been uploaded to a publicly available database (https://doi.org/10.6084/m9.figshare.22736654). Source data are provided with this paper.

References

  1. Wyatt, G. R. & Cohen, S. S. A new pyrimidine base from bacteriophage nucleic acids. Nature 170, 1072–1073 (1952).

    Article  CAS  PubMed  Google Scholar 

  2. Kallen, R. G., Simon, M. & Marmur, J. The new occurrence of a new pyrimidine base replacing thymine in a bacteriophage DNA:5-hydroxymethyl uracil. J. Mol. Biol. 5, 248–250 (1962).

    Article  CAS  PubMed  Google Scholar 

  3. Warren, R. A. Modified bases in bacteriophage DNAs. Annu. Rev. Microbiol. 34, 137–158 (1980).

    Article  CAS  PubMed  Google Scholar 

  4. Weigele, P. & Raleigh, E. A. Biosynthesis and function of modified bases in bacteria and their viruses. Chem. Rev. 116, 12655–12687 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Kirnos, M. D., Khudyakov, I. Y., Alexandrushkina, N. I. & Vanyushin, B. F. 2-aminoadenine is an adenine substituting for a base in S-2L cyanophage DNA. Nature 270, 369–370 (1977).

    Article  CAS  PubMed  Google Scholar 

  6. Zhou, Y. et al. A widespread pathway for substitution of adenine by diaminopurine in phage genomes. Science 372, 512–516 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Sleiman, D. et al. A third purine biosynthetic pathway encoded by aminoadenine-based viral DNA genomes. Science 372, 516–520 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Pezo, V. et al. Noncanonical DNA polymerization by aminoadenine-based siphoviruses. Science 372, 520–524 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Czernecki, D., Bonhomme, F., Kaminski, P.-A. & Delarue, M. Characterization of a triad of genes in cyanophage S-2L sufficient to replace adenine by 2-aminoadenine in bacterial DNA. Nat. Commun. 12, 4710 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Honzatko, R. B. & Fromm, H. J. Structure–function studies of adenylosuccinate synthetase from Escherichia coli. Arch. Biochem. Biophys. 370, 1–8 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Choe, J. Y., Poland, B. W., Fromm, H. J. & Honzatko, R. B. Mechanistic implications from crystalline complexes of wild-type and mutant adenylosuccinate synthetases from Escherichia coli. Biochemistry 38, 6953–6961 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Sintchak, M. D., Arjara, G., Kellogg, B. A., Stubbe, J. & Drennan, C. L. The crystal structure of class II ribonucleotide reductase reveals how an allosterically regulated monomer mimics a dimer. Nat. Struct. Biol. 9, 293–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Cotruvo, J. A. & Stubbe, J. Class I ribonucleotide reductases: metallocofactor assembly and repair in vitro and in vivo. Annu. Rev. Biochem. 80, 733–767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hedstrom, L. IMP dehydrogenase: structure, mechanism, and inhibition. Chem. Rev. 109, 2903–2928 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Salaski, E. J. & Maag, H. GMP synthetase: synthesis and biological evaluation of a stable analog of the proposed AMP-XMP reaction intermediate. Synlett 1999, 897–900 (1999).

    Article  Google Scholar 

  16. Saxild, H. H. & Nygaard, P. Regulation of levels of purine biosynthetic enzymes in Bacillus subtilis: effects of changing purine nucleotide pools. J. Gen. Microbiol. 137, 2387–2394 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Kang, C., Sun, N., Honzatko, R. B. & Fromm, H. J. Replacement of Asp333 with Asn by site-directed mutagenesis changes the substrate specificity of Escherichia coli adenylosuccinate synthetase from guanosine 5′-triphosphate to xanthosine 5′-triphosphate. J. Biol. Chem. 269, 24046–24049 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Hua, G. et al. Characterization of santalene synthases using an inorganic pyrophosphatase coupled colorimetric assay. Anal. Biochem. 547, 26–36 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Cavaluzzi, M. J. & Borer, P. N. Revised UV extinction coefficients for nucleoside-5′-monophosphates and unpaired DNA and RNA. Nucleic Acids Res. 32, e13 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mehrotra, S. & Balaram, H. Kinetic characterization of adenylosuccinate synthetase from the thermophilic archaea Methanocaldococcus jannaschii. Biochemistry 46, 12821–12832 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Bennett, B. D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593–599 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Traut, T. W. Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem. 140, 1–22 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang, J.-M., Baker, B. J., Li, J.-T. & Wang, Y. New microbial lineages capable of carbon fixation and nutrient cycling in deep-sea sediments of the Northern South China Sea. Appl. Environ. Microbiol. 85, e00523–19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nordlund, N. & Reichard, P. Ribonucleotide reductases. Annu. Rev. Biochem. 75, 681–706 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Zhao, F. et al. Enzymatic synthesis of the unnatural nucleotide 2′-deoxyisoguanosine 5′-monophosphate. Chembiochem 23, e202200295 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Benner, S. A. et al. Alternative Watson–Crick synthetic genetic systems. Cold Spring Harb. Perspect. Biol. 8, a023770 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Becker, S., Schneider, C., Crisp, A. & Carell, T. Non-canonical nucleosides and chemistry of the emergence of life. Nat. Commun. 9, 5174 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gerlt, J. A. et al. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta 1854, 1019–1037 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr. D 62, 859–866 (2006).

    Article  PubMed  Google Scholar 

  32. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Adams, P. D. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr.D 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pettersen, E. F. et al. UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Rozewicki, J., Li, S., Amada, K. M., Standley, D. M. & Katoh, K. MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Res. 47, W5–W10 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the instrument analytical centre of the School of Pharmaceutical Science and Technology at Tianjin University; in particular, we thank Y. Gao for providing assistance with the liquid chromatography-MS analysis and the Shanghai Frontiers Science Center for Biomacromolecules and Precision Medicine. This work was supported by the National Natural Science Foundation of China (NSFC) Distinguished Young Scholar of China Program award no. 32125002 to Y. Zhang, award no. 32225003 to M.L., NSFC award no. 32122024 to S.Z. and award no. 31971178 to S.Z., as well as the Innovation Team Project of the Universities in Guangdong Province award no. 2020KCXTD023 to M.L.

Author information

Authors and Affiliations

Authors

Contributions

Y.T., Y. Zhou and L.J. conducted all the biochemical experiments. Y.T., X.W., Y.L. and H.C. performed the bioinformatics analysis. Y.T., Y.L., M.L., S.Z. and Y. Zhang designed the experiments and wrote the paper.

Corresponding authors

Correspondence to Meng Li, Suwen Zhao or Yan Zhang.

Ethics declarations

Competing interests

A patent application related to this work has been filed: patent no. WO2022/152192, enzyme involved in the synthesis of phage diaminopurine and use thereof (Y. Zhang, Y. Zhou and Y.T.). The other authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Brianna Duncan-Lowey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 AG balancing in purine nucleotide synthesis.

a, Synthesis of AMP and GMP from IMP. b, PurZ and PurB are used in the extended G branch pathway to make dZMP. c, Proposed molecular evolution route from PurA to PurZ. The energy donors (ATP or GTP) are labeled in red to highlight their importance in regulating AG balance.

Extended Data Fig. 2 SDS-PAGE gel analyses of GpPurZ0.

a, 4–20% SDS gel with lane 1, molecular weight marker; and lanes 2, 3 and 4 with 1, 2, 4 μg of purified GpPurZ0. b, Elution profile of GpPurZ0 using Superdex 200 gel filtration chromatography. c, Calibration plot based on the molecular weight standards, including horse apoferritin (443 kDa), sweet potato β-Amylase (200 kDa), BSA (66 kDa), and bovine carbonic anhydrase (29 kDa) (Sigma MWGF 1000-1KT).

Source data

Extended Data Fig. 3 Spectrometric assays of GpPurZ0 to determine substrate specificity.

a-p, Different substrate combinations were used as substrates as indicated.

Source data

Extended Data Fig. 4 Enzyme kinetic assays of GpPurZ0.

Kinetic assays were performed by monitoring increase of absorbance at 287 nm with varying concentrations of one substrate as indicated on X-axis, a-d, GTP, dGTP, dGMP and dIMP respectively, while maintaining the other two substrates in excess. Data are mean ± SEM (N = 3 replicates).

Source data

Extended Data Fig. 5 dGMP/IMP binding site comparison.

a, dGMP binding site comparison between GpPurZ0 (pink, 7VF6) and CpPurZ (light green, 7ODX). b, dGMP binding site comparison between GpPurZ0 (pink, 7VF6) and VpPurZ (turquoise, 6FM1). c, dGMP/IMP binding site comparison between GpPurZ0 (pink, 7VF6) and PhPurA (blue, 5K7X).

Extended Data Fig. 6 Structure and sequence analyses of the NTP binding pocket in PurZ0, PurZ and PurA.

a, The NTP binding site of the EcPurA (PDB: 1CIB). b, Sequence logos of residues interacting with the purine moiety of NTPs in all PurA of bacteria. c, The NTP binding site of the GpPurZ0 (PDB: 7VF6). d, Sequence logos of residues interacting with the purine moiety of NTPs in PurZ0 of phages. e, The NTP binding site of the VpPurZ (PDB: 6FKO). f, Sequence logos of residues interacting with the purine moiety of NTPs in PurZ of phages.

Extended Data Fig. 7 Gel analyses and enzyme activity assays of different GpPurZ0 mutants.

a, Gel analysis of purified proteins. 4–20% SDS gel with lane 1, molecular weight marker; and lanes 2–7 with purified M304A, M304F, D306A, D306N, R20A, S15D mutants. b, Gel analysis of fractions during purification of the D306A mutant. 4–20% SDS gel with lane 1, molecular weight marker; lane 2, cell debris and inclusion body; lane 3, soluble fraction of total cell lysate; lane 4, unbound of the Ni-NTA column; lane 5, eluate with buffer containing 25 mM imidazole; lane 6, eluate with buffer containing 250 mM imidazole; lane 7, unbound of the DEAE column, and lane 8, eluate with buffer containing 400 mM KCl from the DEAE column. c, Enzyme activities of the mutants relative to that of the wild type enzyme. Data are mean ± SEM (N = 3 replicates). d-l, Spectrometric assays of the wild type and mutant GpPurZ0 enzymes.

Source data

Extended Data Fig. 8 Kinetic assays of the mutant enzymes.

a-c, D306N, M304F and R20A respectively. Data are mean ± SEM (N = 3 replicates).

Source data

Extended Data Fig. 9 Characterization of PurZ0 enzymes of different origins.

a-d, Gel analysis of the purified enzymes. 4–20% SDS gel with lane 1, molecular weight marker; and lanes 2, 3 and 4 with 1, 2, 4 μg of purified SpPurZ0, MptPurZ0, MpsPurZ0, MsPurZ0 respectively. e–h, Spectrometric assays of PurZ0 enzymes as indicated. i-l, PurZ0-catalyzed phosphate release detected by the phosphomolybdate assay; (+): the complete assay with GTP-dGMP, Asp and PurZ0 (-): without PurZ0, Asp (-): without Asp-Na+ as controls.

Source data

Extended Data Fig. 10

Genome neighborhood analyses of PurZ and PurZ0.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, Tables 1–4 and references.

Reporting Summary

Supplementary Data 1

Preliminary full worldwide PDB X-ray structure validation report.

Supplementary Data 2

Company names and catalogue numbers of the commercial reagents.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 2

Unprocessed gels and statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 7

Unprocessed gels and statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 9

Unprocessed gels and statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, Y., Wu, X., Liu, Y. et al. Alternative Z-genome biosynthesis pathway shows evolutionary progression from Archaea to phage. Nat Microbiol 8, 1330–1338 (2023). https://doi.org/10.1038/s41564-023-01410-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01410-1

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology