Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elementary excitations of single-photon emitters in hexagonal boron nitride

Abstract

Single-photon emitters serve as building blocks for many emerging concepts in quantum photonics. The recent identification of bright, tunable and stable emitters in hexagonal boron nitride (hBN) has opened the door to quantum platforms operating across the infrared to ultraviolet spectrum. Although it is widely acknowledged that defects are responsible for single-photon emitters in hBN, crucial details regarding their origin, electronic levels and orbital involvement remain unknown. Here we employ a combination of resonant inelastic X-ray scattering and photoluminescence spectroscopy in defective hBN, unveiling an elementary excitation at 285 meV that gives rise to a plethora of harmonics correlated with single-photon emitters. We discuss the importance of N π* anti-bonding orbitals in shaping the electronic states of the emitters. The discovery of elementary excitations in hBN provides fundamental insights into quantum emission in low-dimensional materials, paving the way for future investigations in other platforms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-photon emission and RIXS processes in hBN.
Fig. 2: XAS and RIXS measurements on hBN.
Fig. 3: Fundamental excitations in defective flakes of hBN.
Fig. 4: Fundamental energies in RIXS and PL experiments.

Similar content being viewed by others

Data availability

Relevant data are available from the corresponding authors upon reasonable request.

Code availability

The DAP analysis code is available from the corresponding authors upon reasonable request.

References

  1. Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    Article  CAS  Google Scholar 

  2. Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Bourrellier, R. et al. Bright UV single photon emission at point defects in h-BN. Nano Lett. 16, 4317–4321 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Grosso, G. et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 8, 705 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fournier, C. et al. Position-controlled quantum emitters with reproducible emission wavelength in hexagonal boron nitride. Nat. Commun. 12, 3779 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dietrich, A. et al. Observation of Fourier transform limited lines in hexagonal boron nitride. Phys. Rev. B 98, 081414 (2018).

    Article  CAS  Google Scholar 

  7. Chejanovsky, N. et al. Single-spin resonance in a van der Waals embedded paramagnetic defect. Nat. Mater. 20, 1079–1084 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Jungwirth, N. R. & Fuchs, G. D. Optical absorption and emission mechanisms of single defects in hexagonal boron nitride. Phys. Rev. Lett. 119, 057401 (2017).

    Article  PubMed  Google Scholar 

  9. Abdi, M., Chou, J.-P., Gali, A. & Plenio, M. B. Color centers in hexagonal boron nitride monolayers: a group theory and ab initio analysis. ACS Photonics 5, 1967–1976 (2018).

    Article  CAS  Google Scholar 

  10. Tawfik, S. A. et al. First-principles investigation of quantum emission from hBN defects. Nanoscale 9, 13575–13582 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Mendelson, N. et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nat. Mater. 20, 321–328 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Gottscholl, A. et al. Room temperature coherent control of spin defects in hexagonal boron nitride. Sci. Adv. 7, eabf3630 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Gottscholl, A. et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540–545 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Tran, T. T. et al. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano 10, 7331–7338 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Ament, L. J. P., van Veenendaal, M., Devereaux, T. P., Hill, J. P. & van den Brink, J. Resonant inelastic X-ray scattering studies of elementary excitations. Rev. Mod. Phys. 83, 705–767 (2011).

    Article  CAS  Google Scholar 

  16. Ament, L. J. P., van Veenendaal, M. & van den Brink, J. Determining the electron-phonon coupling strength from resonant inelastic X-ray scattering at transition metal L-edges. Europhys. Lett. 95, 27008 (2011).

    Article  Google Scholar 

  17. Gel’mukhanov, F., Odelius, M., Polyutov, S. P., Föhlisch, A. & Kimberg, V. Dynamics of resonant X-ray and Auger scattering. Rev. Mod. Phys. 93, 035001 (2021).

    Article  Google Scholar 

  18. Dvorak, J., Jarrige, I., Bisogni, V., Coburn, S. & Leonhardt, W. Towards 10 meV resolution: the design of an ultrahigh resolution soft X-ray RIXS spectrometer. Rev. Sci. Instrum. 87, 115109 (2016).

    Article  PubMed  Google Scholar 

  19. Pelliciari, J. et al. Tuning spin excitations in magnetic films by confinement. Nat. Mater. 20, 188–193 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Pelliciari, J. et al. Evolution of spin excitations from bulk to monolayer FeSe. Nat. Commun. 12, 3122 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dean, M. P. M. et al. Spin excitations in a single La2CuO4 layer. Nat. Mater. 11, 850–854 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. McDougall, N. L., Partridge, J. G., Nicholls, R. J., Russo, S. P. & McCulloch, D. G. Influence of point defects on the near edge structure of hexagonal boron nitride. Phys. Rev. B 96, 144106 (2017).

    Article  Google Scholar 

  23. Vinson, J., Jach, T., Müller, M., Unterumsberger, R. & Beckhoff, B. Resonant X-ray emission of hexagonal boron nitride. Phys. Rev. B 96, 205116 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. McDougall, N. L., Nicholls, R. J., Partridge, J. G. & McCulloch, D. G. The near edge structure of hexagonal boron nitride. Microsc. Microanal. 20, 1053–1059 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Xu, Z.-Q. et al. Single photon emission from plasma treated 2D hexagonal boron nitride. Nanoscale 10, 7957–7965 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Serrano, J. et al. Vibrational properties of hexagonal boron nitride: inelastic X-ray scattering and ab initio calculations. Phys. Rev. Lett. 98, 095503 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Geondzhian, A. & Gilmore, K. Demonstration of resonant inelastic X-ray scattering as a probe of exciton-phonon coupling. Phys. Rev. B 98, 214305 (2018).

    Article  CAS  Google Scholar 

  29. Geondzhian, A. & Gilmore, K. Generalization of the Franck-Condon model for phonon excitations by resonant inelastic X-ray scattering. Phys. Rev. B 101, 214307 (2020).

    Article  CAS  Google Scholar 

  30. Feng, X. et al. Disparate exciton-phonon couplings for zone-center and boundary phonons in solid-state graphite. Phys. Rev. Lett. 125, 116401 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Dashwood, C. et al. Probing electron-phonon interactions away from the Fermi level with resonant inelastic X-ray scattering. Phys. Rev. X 11, 041052 (2021).

    CAS  Google Scholar 

  32. Kjellsson, L. et al. Resonant inelastic X-ray scattering at the N2π resonance: lifetime-vibrational interference, radiative electron rearrangement, and wave-function imaging. Phys. Rev. A 103, 022812 (2021).

    Article  CAS  Google Scholar 

  33. Lindblad, R. et al. X-ray absorption spectrum of the N2+ molecular ion. Phys. Rev. Lett. 124, 203001 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Ament, L. J., Van Veenendaal, M., Devereaux, T. P., Hill, J. P. & Van Den Brink, J. Resonant inelastic X-ray scattering studies of elementary excitations. Rev. Mod. Phys. 83, 705 (2011).

    Article  CAS  Google Scholar 

  35. Lee, J. et al. Charge-orbital-lattice coupling effects in the dd excitation profile of one-dimensional cuprates. Phys. Rev. B 89, 041104 (2014).

    Article  Google Scholar 

  36. Martinelli, L. et al. Collective nature of orbital excitations in layered cuprates in the absence of apical oxygens. Phys. Rev. Lett. 132, 066004 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. Comtet, J. et al. Wide-field spectral super-resolution mapping of optically active defects in hexagonal boron nitride. Nano Lett. 19, 2516–2523 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Hayee, F. et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy. Nat. Mater. 19, 534–539 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Mendelson, N. et al. Engineering and tuning of quantum emitters in few-layer hexagonal boron nitride. ACS Nano 13, 3132–3140 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Camphausen, R. et al. Observation of near-infrared sub-Poissonian photon emission in hexagonal boron nitride at room temperature. APL Photonics 5, 076103 (2020).

    Article  CAS  Google Scholar 

  41. Schell, A. W., Svedendahl, M. & Quidant, R. Quantum emitters in hexagonal boron nitride have spectrally tunable quantum efficiency. Adv. Mater. 30, 1704237 (2018).

    Article  Google Scholar 

  42. Grosso, G. et al. Low-temperature electron–phonon interaction of quantum emitters in hexagonal boron nitride. ACS Photonics 7, 1410–1417 (2020).

    Article  CAS  Google Scholar 

  43. Mendelson, N., Doherty, M., Toth, M., Aharonovich, I. & Tran, T. T. Strain-induced modification of the optical characteristics of quantum emitters in hexagonal boron nitride. Adv. Mater. 32, 1908316 (2020).

    Article  CAS  Google Scholar 

  44. Nikolay, N. et al. Very large and reversible Stark-shift tuning of single emitters in layered hexagonal boron nitride. Phys. Rev. Appl. 11, 041001 (2019).

    Article  CAS  Google Scholar 

  45. Williams, F. Donor-acceptor pairs in semiconductors. Phys. Status Solidi B 25, 493–512 (1968).

    Article  CAS  Google Scholar 

  46. Tan, Q. et al. Donor-acceptor pair quantum emitters in hexagonal boron nitride. Nano Lett. 22, 1331–1337 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Laturia, A., Van de Put, M. L. & Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. npj 2D Mater. Appl. 2, 6 (2018).

    Article  Google Scholar 

  48. Weston, L., Wickramaratne, D., Mackoit, M., Alkauskas, A. & Van de Walle, C. Native point defects and impurities in hexagonal boron nitride. Phys. Rev. B 97, 214104 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Gali for fruitful discussions. Work at Brookhaven National Laboratory was supported by the US Department of Energy (DOE) Office of Science under contract no. DE-SC0012704 (J.P., Y.G., J.L., S.F. and V.B.). This work was also supported by the Laboratory Directed Research and Development project of Brookhaven National Laboratory No. 21-037 (J.P. and S.F.) and by the US DOE Office of Science, Early Career Research Program (V.B. and Y.G). This research used Beamline 2-ID of the National Synchrotron Light Source II, a US DOE Office of Science User Facility, operated for the DOE Office of Science by Brookhaven National Laboratory under contract no. DE-SC0012704. Work at CUNY is supported by the National Science Foundation (NSF) (grant no. DMR-2044281) (G.G.), the physics department of the Graduate Center of CUNY and the Advanced Science Research Center (E.M., J.M.W., S.B.C. and G.G.) and the Research Foundation through PSC-CUNY award no. 64510-00 52 (G.G.). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by MEXT, Japan (grant no. JPMXP0112101001), and JSPS KAKENHI (grant nos. 19H05790, 20H00354 and 21H05233).

Author information

Authors and Affiliations

Authors

Contributions

J.P. and G.G. conceived the project. J.P., Y.G., J.L., S.F. and V.B. performed the RIXS experiments. T.T. and K.W. synthesized the high-quality hBN. E.M. and G.G. developed the material process to generate the defective hBN. E.M. prepared the pristine and highly defective hBN samples. E.M. performed the PL experiments with the help of J.M.W., S.B.C. and G.G. E.M., J.M.W. and G.G. developed the fitting methods. J.P. and G.G. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Jonathan Pelliciari or Gabriele Grosso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Jeroen van den Brink and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelliciari, J., Mejia, E., Woods, J.M. et al. Elementary excitations of single-photon emitters in hexagonal boron nitride. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01866-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01866-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing