Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A DNA origami device spatially controls CD95 signalling to induce immune tolerance in rheumatoid arthritis

Abstract

DNA origami is capable of spatially organizing molecules into sophisticated geometric patterns with nanometric precision. Here we describe a reconfigurable, two-dimensional DNA origami with geometrically patterned CD95 ligands that regulates immune cell signalling to alleviate rheumatoid arthritis. In response to pH changes, the device reversibly transforms from a closed to an open configuration, displaying a hexagonal pattern of CD95 ligands with ~10 nm intermolecular spacing, precisely mirroring the spatial arrangement of CD95 receptor clusters on the surface of immune cells. In a collagen-induced arthritis mouse model, DNA origami elicits robust and selective activation of CD95 death-inducing signalling in activated immune cells located in inflamed synovial tissues. Such localized immune tolerance ameliorates joint damage with no noticeable side effects. This device allows for the precise spatial control of cellular signalling, expanding our understanding of ligand–receptor interactions and is a promising platform for the development of pharmacological interventions targeting these interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic and characterization of designer DNA origami in spatial control of CD95 signalling for reversal of RA.
Fig. 2: Characterization of the designer DNA origami.
Fig. 3: Spatial arrangement of the CD95L array directs the activation of CD95 signalling in A20 cells.
Fig. 4: In vivo distribution and biosafety of the designer DNA origami in mice.
Fig. 5: Designer DNA origami triggers robust therapeutic efficacy in CIA mice.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the Article and its Supplementary Information files. Source data can be found on figshare at https://doi.org/10.6084/m9.figshare.25111502 (ref. 51). Source data are provided with this paper.

References

  1. Vital, E. M. & Emery, P. The development of targeted therapies in rheumatoid arthritis. J. Autoimmun. 31, 219–227 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Smolen, J. S. & Aletaha, D. Rheumatoid arthritis therapy reappraisal: strategies, opportunities and challenges. Nat. Rev. Rheumatol. 11, 276–289 (2015).

    Article  PubMed  Google Scholar 

  3. Ju, S.-T. et al. Fas (CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373, 444–448 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Vanamee, É. S. & Faustman, D. L. Structural principles of tumor necrosis factor superfamily signaling. Sci. Signal. 11, eaao4910 (2018).

    Article  PubMed  Google Scholar 

  5. Scott, F. L. et al. The Fas–FADD death domain complex structure unravels signalling by receptor clustering. Nature 457, 1019–1022 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, L. et al. The Fas–FADD death domain complex structure reveals the basis of DISC assembly and disease mutations. Nat. Struct. Mol. Biol. 17, 1324–1329 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Balta, G. S. G. et al. 3D cellular architecture modulates tyrosine kinase activity, thereby switching CD95-mediated apoptosis to survival. Cell Rep. 29, 2295–2306 (2019).

    Article  PubMed  Google Scholar 

  8. Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Chandrasekaran, A. R., Anderson, N., Kizer, M., Halvorsen, K. & Wang, X. Beyond the fold: emerging biological applications of DNA origami. ChemBioChem 17, 1081–1089 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Shaw, A. et al. Spatial control of membrane receptor function using ligand nanocalipers. Nat. Methods 11, 841–846 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Kwon, P. S. et al. Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition. Nat. Chem. 12, 26–35 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, Y., Baars, I., Fordos, F. & Hogberg, B. Clustering of death receptor for apoptosis using nanoscale patterns of peptides. ACS Nano 15, 9614–9626 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Comberlato, A., Koga, M. M., Nüssing, S., Parish, I. A. & Bastings, M. M. C. Spatially controlled activation of Toll-like receptor 9 with DNA-based nanomaterials. Nano Lett. 22, 2506–2513 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fang, T. et al. Spatial regulation of T-cell signaling by programmed death-ligand 1 on wireframe DNA origami flat sheets. ACS Nano 15, 3441–3452 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shaw, A. et al. Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies. Nat. Nanotechnol. 14, 184–190 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wickham, S. F. J. et al. Complex multicomponent patterns rendered on a 3D DNA-barrel pegboard. Nat. Commun. 11, 5768 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eklund, A. S., Comberlato, A., Parish, I. A., Jungmann, R. & Bastings, M. M. C. Quantification of strand accessibility in biostable DNA origami with single-staple resolution. ACS Nano 15, 17668–17677 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goldie, I. & Nachemson, A. Synovial pH in rheumatoid knee-joints. I. The effect of synovectomy. Acta Orthop. Scand. 40, 634–641 (1969).

    Article  CAS  PubMed  Google Scholar 

  19. Stevens, C. R., Williams, R. B., Farrell, A. J. & Blake, D. R. Hypoxia and inflammatory synovitis: observations and speculation. Ann. Rheum. Dis. 50, 124–132 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Farr, M., Garvey, K., Bold, A. M., Kendall, M. J. & Bacon, P. A. Significance of the hydrogen ion concentration in synovial fluid in rheumatoid arthritis. Clin. Exp. Rheumatol. 3, 99–104 (1985).

    CAS  PubMed  Google Scholar 

  21. Roskams, T., Libbrecht, L., Van Damme, B. & Desmet, V. Fas and Fas ligand: strong co-expression in human hepatocytes surrounding hepatocellular carcinoma; can cancer induce suicide in peritumoural cells? J. Pathol. 191, 150–153 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Li, S. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, S. et al. A DNA nanodevice-based vaccine for cancer immunotherapy. Nat. Mater. 20, 421–430 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Manuguri, S., Nguyen, M. K., Loo, J., Natarajan, A. K. & Kuzyk, A. Advancing the utility of DNA origami technique through enhanced stability of DNA-origami-based assemblies. Bioconjug. Chem. 34, 6–17 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, P. F., Meyer, T. A., Pan, V., Dutta, P. K. & Ke, Y. G. The beauty and utility of DNA origami. Chem 2, 359–382 (2017).

    Article  CAS  Google Scholar 

  26. Hahn, J., Wickham, S. F. J., Shih, W. M. & Perrault, S. D. Addressing the instability of DNA nanostructures in tissue culture. ACS Nano 8, 8765–8775 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ponnuswamy, N. et al. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nat. Commun. 8, 15654 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Perrault, S. D. & Shih, W. M. Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano 8, 5132–5140 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mei, Q. A. et al. Stability of DNA origami nanoarrays in cell lysate. Nano Lett. 11, 1477–1482 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chandrasekaran, A. R. Nuclease resistance of DNA nanostructures. Nat. Rev. Chem. 5, 225–239 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schneider, P. et al. Conversion of membrane-bound Fas (CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J. Exp. Med. 187, 1205–1213 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Algeciras-Schimnich, A. et al. Molecular ordering of the initial signaling events of CD95. Mol. Cell. Biol. 22, 207–220 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, K. H. et al. The role of receptor internalization in CD95 signaling. EMBO J. 25, 1009–1023 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Malyala, P. & Singh, M. Endotoxin limits in formulations for preclinical research. J. Pharm. Sci. 97, 2041–2044 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Hong, E. et al. Structure and composition define immunorecognition of nucleic acid nanoparticles. Nano Lett. 18, 4309–4321 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Namekawa, T., Wagner, U. G., Goronzy, J. J. & Weyand, C. M. Functional subsets of CD4 T cells in rheumatoid synovitis. Arthritis Rheum. 41, 2108–2116 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Gizinski, A. M. & Fox, D. A. T cell subsets and their role in the pathogenesis of rheumatic disease. Curr. Opin. Rheumatol. 26, 204–210 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Reparon-Schuijt, C. C. et al. Secretion of anti-citrulline-containing peptide antibody by B lymphocytes in rheumatoid arthritis. Arthritis Rheum. 44, 41–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Okamoto, K. et al. Induction of apoptosis in the rheumatoid synovium by Fas ligand gene transfer. Gene Ther. 5, 331–338 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, H. et al. Amelioration of collagen-induced arthritis by CD95 (Apo-1/Fas)-ligand gene transfer. J. Clin. Investig. 100, 1951–1957 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Choy, E. H. & Panayi, G. S. Cytokine pathways and joint inflammation in rheumatoid arthritis. N. Engl. J. Med. 344, 907–916 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Smolen, J. S. & Steiner, G. Therapeutic strategies for rheumatoid arthritis. Nat. Rev. Drug Discov. 2, 473–488 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Fullerton, J. N., O’Brien, A. J. & Gilroy, D. W. Pathways mediating resolution of inflammation: when enough is too much. J. Pathol. 231, 8–20 (2013).

    Article  PubMed  Google Scholar 

  44. Elliott, M. R., Koster, K. M. & Murphy, P. S. Efferocytosis signaling in the regulation of macrophage inflammatory responses. J. Immunol. 198, 1387–1394 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Achkar, I. W. et al. Oncogenic role of dysregulated leptin signaling in the pathogenesis of ovarian cancer. Transl. Med. Commun. 4, 1 (2019).

    Article  Google Scholar 

  46. Akhtar, S. et al. Cytokine-mediated dysregulation of signaling pathways in the pathogenesis of multiple myeloma. Int. J. Mol. Sci. 21, 5002 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mehta, M. et al. Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update. Inflammopharmacology 28, 795–817 (2020).

    Article  PubMed  Google Scholar 

  48. Brand, D. D., Latham, K. A. & Rosloniec, E. F. Collagen-induced arthritis. Nat. Protoc. 2, 1269–1275 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Zhou, B. et al. Therapeutic effects of a novel BAFF blocker on arthritis. Signal Transduct. Target. Ther. 4, 19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang, H. et al. TACI-ligand interactions are required for T cell activation and collagen-induced arthritis in mice. Nat. Immunol. 2, 632–637 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Li, L. A DNA origami device spatially controls CD95 signalling to induce immune tolerance in rheumatoid arthritis. figshare https://doi.org/10.6084/m9.figshare.25111502.v2 (2024).

Download references

Acknowledgements

We acknowledge financial support from the National University of Singapore (grant nos. NUHSRO/2020/133/Startup/08, NUHSRO/2023/008/NUSMed/TCE/LOA and NUHSRO/2021/034/TRP/09/Nanomedicine), National Medical Research Council (grant no. MOH-OFIRG23jan-0005), Singapore Ministry of Education (grant no. MOE-000387-00), National Research Foundation (grant no. NRF-000352-00), National Natural Science Foundation of China (grant nos. NSFC 82202311, 62288102, 82302356 and 22274081), Science Foundation of Fujian Normal University (grant no. Y07204080K13) and Natural Science Foundation of Jiangsu Province, Major Project (grant no. BK20212012). We thank H. Liu at the National University of Singapore for providing A20 cells. We thank X. Song at the West China School of Public Health and West China Fourth Hospital, Sichuan University for help with confocal microscopy imaging. We thank B. Zhou at the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University for help with establishing the CIA model. We thank Guangzhou Sagene Biotech Co., Ltd. for help in making the pattern diagrams.

Author information

Authors and Affiliations

Authors

Contributions

X.C., J.C., Z.Y., L.L., J.Y., W.M. and L.T. conceived and designed the experiments. L.L., J.Y., W.M., L.T. and L.Y. performed experiments and wrote the manuscript. J.Z., T.D. and Y.Z. performed data analysis. X.C., J.C. and Z.Y. supervised the entire project. L.W. and C.F. conducted proofreading of the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Zhen Yang, Jie Chao or Xiaoyuan Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Maartje Bastings, Mauro Perretti, Marcus Peter and Liangfang Zhang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The spatial arrangement of the CD95L array directs the activation of CD95 signaling in Jurkat cells.

a, Clustering of CD95 receptors in Jurkat cells 2 h following treatment with NS-empty (G2), sCD95L (G3), NS-10 (G4), ND-10 in the culture medium (pH 7.4) (G5), ND-10 in the culture medium (pH 6.5) (G6). Untreated (G1); Scale bar, 5 μm. The experiment was performed three times with similar results. (b, c), Colocalization of CD95 with the endosomal marker-early endosome antigen (EEA1) following NS-10 stimulation (b) or ND-10 stimulation in the culture medium (pH 6.5) (c). Scale bar, 5 μm. The experiment was performed three times with similar results. d, Immunocytochemistry analysis of Cleaved Caspase-8 in Jurkat cells 6 h following treatment with NS-empty (G2), sCD95L (G3), NS-10 (G4), ND-10 in the culture medium (pH 7.4) (G5), ND-10 in the culture medium (pH 6.5) (G6). Untreated (G1); Scale bar, 5 μm. The experiment was performed three times with similar results.

Extended Data Fig. 2 DNA origami nanodevice exhibits conformational transition in response to pH trigger in vivo.

Representative in vivo fluorescence images of CIA mice after intravenous injection with pH-sensitive nanodevice with i-motif-based fasteners labeled with both Cy5.5 fluorophore and BBQ650 quencher (w/ Cy5.5 & BBQ650), pH-sensitive nanodevice with i-motif-based fasteners labeled with Cy5.5 fluorophore (w/ Cy5.5), or pH-non-sensitive nanodevice with the pH-non-sensitive fasteners labeled with both Cy5.5 fluorophore and BBQ650 quencher (w/ Cy5.5 & BBQ650).

Extended Data Fig. 3 Designer DNA origami shows minimal immunomodulation potential.

(a, b) Concentration of TNF-α, IL-6, and IL-1β in the supernatants of RAW 264.7 cells (a) and BMDMs (b) following ND-empty treatment at indicated concentration. LPS (lipopolysaccharide, Invitrogen) was used as a control. n = 3 biologically independent samples per group. Note that the cytokine concentrations in some samples were below the threshold of the assay range and they were determined by extrapolating from the standard curve. Data presented as means ± s.d. Statistical significance was calculated via One-way ANOVA with Tukey post-hoc test (a, b).

Source data

Extended Data Fig. 4 Designer DNA origami yields long-term therapeutic efficacy in CIA mice.

a, Schematic illustration of the long-term treatment regimen. b, Clinical arthritis scores of the CIA mice following indicated treatments. n = 12 biologically independent mice per group. c, The paw swelling measurement of the CIA mice following indicated treatments. n = 12 biologically independent mice per group. Data presented as means ± s.d. Statistical significance was calculated via One-way ANOVA with Tukey post-hoc test (b, c). The experiment was performed twice with similar results.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–43.

Reporting Summary

Supplementary Data

DNA sequences of the staple strand pool and functional staple strands.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 3.

Statistical source data.

Source Data Extended Data Fig. 4.

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Yin, J., Ma, W. et al. A DNA origami device spatially controls CD95 signalling to induce immune tolerance in rheumatoid arthritis. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01865-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01865-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing