Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Near-room-temperature water-mediated densification of bulk van der Waals materials from their nanosheets

Abstract

The conventional fabrication of bulk van der Waals (vdW) materials requires a temperature above 1,000 °C to sinter from the corresponding particulates. Here we report the near-room-temperature densification (for example, 45 °C for 10 min) of two-dimensional nanosheets to form strong bulk materials with a porosity of <0.1%, which are mechanically stronger than the conventionally made ones. The mechanistic study shows that the water-mediated activation of van der Waals interactions accounts for the strong and dense bulk materials. Initially, water adsorbed on two-dimensional nanosheets lubricates and promotes alignment. The subsequent extrusion closes the gaps between the aligned nanosheets and densifies them into strong bulk materials. Water extrusion also generates stresses that increase with moulding temperature, and too high a temperature causes intersheet misalignment; therefore, a near-room-temperature moulding process is favoured. This technique provides an energy-efficient alternative to design a wide range of dense bulk van der Waals materials with tailored compositions and properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Moulding of nanosheets to prepare strong, densified bulk vdW materials.
Fig. 2: Change in mechanical properties and microstructure of bulk hBN as a function of moulding temperature.
Fig. 3: Understanding the role of water in the moulding of bulk hBN.
Fig. 4: Processability of moulded bulk hBN and its thermal properties.

Similar content being viewed by others

Data availability

All relevant data supporting the findings of this study are available in the Article and its Supplementary Information. All other data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Liu, P. et al. Layered and scrolled nanocomposites with aligned semi-infinite graphene inclusions at the platelet limit. Science 353, 364–367 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Wei, T.-R. et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe. Science 369, 542–545 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Mateti, S. et al. Bulk hexagonal boron nitride with a quasi-isotropic thermal conductivity. Adv. Funct. Mater. 28, 1707556 (2018).

    Article  Google Scholar 

  4. Yeh, C. N. et al. Binder-free graphene oxide doughs. Nat. Commun. 10, 422 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duan, X. et al. Effect of sintering pressure on the texture of hot-press sintered hexagonal boron nitride composite ceramics. Scr. Mater. 68, 104–107 (2013).

    Article  CAS  Google Scholar 

  6. Eichler, J. & Lesniak, C. Boron nitride (BN) and BN composites for high-temperature applications. J. Eur. Ceram. Soc. 28, 1105–1109 (2008).

    Article  CAS  Google Scholar 

  7. Steinborn, C. et al. Correlation between microstructure and electrical resistivity of hexagonal boron nitride ceramics. J. Eur. Ceram. Soc. 33, 1225–1235 (2013).

    Article  CAS  Google Scholar 

  8. Nieto, A., Lahiri, D. & Agarwal, A. Synthesis and properties of bulk graphene nanoplatelets consolidated by spark plasma sintering. Carbon 50, 4068–4077 (2012).

    Article  CAS  Google Scholar 

  9. Yang, H. et al. Low temperature self-densification of high strength bulk hexagonal boron nitride. Nat. Commun. 10, 854 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kang, S.-J. L. Sintering: Densification, Grain Growth and Microstructure (Butterworth-Heinemann, 2004).

  11. Wen, G., Wu, G., Lei, T., Zhou, Y. & Guo, Z. Co-enhanced SiO2-BN ceramics for high-temperature dielectric applications. J. Eur. Ceram. Soc. 20, 1923–1928 (2000).

    Article  CAS  Google Scholar 

  12. Guo, J. et al. Cold sintering: a paradigm shift for processing and integration of ceramics. Angew. Chem. Int. Ed. 55, 11457–11461 (2016).

    Article  CAS  Google Scholar 

  13. Sengul, M. Y., Guo, J., Randall, C. A. & van Duin, A. C. T. Water-mediated surface diffusion mechanism enables the cold sintering process: a combined computational and experimental study. Angew. Chem. Int. Ed. 58, 12420–12424 (2019).

    Article  CAS  Google Scholar 

  14. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, C. et al. Controllable Co-segregation synthesis of wafer-scale hexagonal boron nitride thin films. Adv. Mater. 26, 1776–1781 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, B. et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 591, 385–390 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Tzenov, N. V. & Barsoum, M. W. Synthesis and characterization of Ti3AlC2. J. Am. Ceram. Soc. 83, 825–832 (2000).

    Article  CAS  Google Scholar 

  20. Inagaki, M., Kang, F., Toyoda, M. & Konno, H. Advanced Materials Science and Engineering of Carbon (Butterworth-Heinemann, 2014).

  21. Wan, S. et al. High-strength scalable MXene films through bridging-induced densification. Science 374, 96–99 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Okuma, G. et al. 3D multiscale-imaging of processing-induced defects formed during sintering of hierarchical powder packings. Sci. Rep. 9, 11595 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lei, W. et al. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nat. Commun. 6, 8849 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Wan, S. et al. High-strength scalable graphene sheets by freezing stretch-induced alignment. Nat. Mater. 20, 624–631 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, Z. et al. Texture and anisotropy of hot-pressed h-BN matrix composite ceramics with in situ formed YAG. J. Adv. Ceram. 11, 532–544 (2022).

    Article  CAS  Google Scholar 

  26. Xue, J. X., Liu, J. X., Xie, B. H. & Zhang, G. J. Pressure-induced preferential grain growth, texture development and anisotropic properties of hot pressed hexagonal boron nitride ceramics. Scr. Mater. 65, 966–969 (2011).

    Article  CAS  Google Scholar 

  27. Chen, C. et al. Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation. Nat. Commun. 9, 1902 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li, P. et al. Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat. Commun. 11, 2645 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hermans, J., Hermans, P., Vermaas, D. & Weidinger, A. Quantitative evaluation of orientation in cellulose fibres from the X-ray fibre diagram. Recl. Trav. Chim. Pays-Bas 65, 427–447 (1946).

    Article  CAS  Google Scholar 

  30. Zhai, F. R., Lu, M., Shan, K., Yi, Z. Z. & Xie, Z. P. Spark plasma sintering and characterization of mixed h-BN powders with different grain sizes. Solid State Phenom. 281, 414–419 (2018).

    Article  Google Scholar 

  31. Wu, Y. et al. The rise of plastic deformation in boron nitride ceramics. Sci. China Mater. 64, 46–51 (2021).

    Article  Google Scholar 

  32. Menig, R., Meyers, M., Meyers, M. & Vecchio, K. Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells. Acta Mater. 48, 2383–2398 (2000).

    Article  CAS  Google Scholar 

  33. Lin, K. et al. Nanoburl graphites. Adv. Mater. 33, 2007513 (2021).

    Article  CAS  Google Scholar 

  34. Falin, A. et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun. 8, 15815 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Han, E. et al. Ultrasoft slip-mediated bending in few-layer graphene. Nat. Mater. 19, 305–309 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Briscoe, W. H. et al. Boundary lubrication under water. Nature 444, 191–194 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Panman, M. R. et al. Water lubricates hydrogen-bonded molecular machines. Nat. Chem. 5, 929–934 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Lee, W.-C. et al. Enhanced water evaporation from Å-scale graphene nanopores. ACS Nano 16, 15382–15396 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, Y., Alibakhshi, M. A., Zhao, Y. & Duan, C. Exploring ultimate water capillary evaporation in nanoscale conduits. Nano Lett. 17, 4813–4819 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Secchi, E. et al. Massive radius-dependent flow slippage in carbon nanotubes. Nature 537, 210–213 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tocci, G., Bilichenko, M., Joly, L. & Iannuzzi, M. Ab initio nanofluidics: disentangling the role of the energy landscape and of density correlations on liquid/solid friction. Nanoscale 12, 10994–11000 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Keerthi, A. et al. Water friction in nanofluidic channels made from two-dimensional crystals. Nat. Commun. 12, 3092 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, K. et al. Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking. Nat. Mater. 21, 1121–1129 (2022).

    Article  PubMed  Google Scholar 

  44. Zhang, X. et al. Ultrathick and highly thermally conductive graphene films by self-fusion. Carbon 167, 249–255 (2020).

    Article  CAS  Google Scholar 

  45. Klobčar, D., Kosec, L., Kosec, B. & Tušek, J. Thermo fatigue cracking of die casting dies. Eng. Fail. Anal. 20, 43–53 (2012).

    Article  Google Scholar 

  46. Bickerton, S. & Abdullah, M. Z. Modeling and evaluation of the filling stage of injection/compression moulding. Comp. Sci. Technol. 63, 1359–1375 (2003).

    Article  CAS  Google Scholar 

  47. Kusunose, T. & Sekino, T. Thermal conductivity of hot-pressed hexagonal boron nitride. Scr. Mater. 124, 138–141 (2016).

    Article  CAS  Google Scholar 

  48. Xu, L. et al. A malleable composite dough with well-dispersed and high-content boron nitride nanosheets. ACS Nano 17, 4886–4895 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Guerra, V., Wan, C. & McNally, T. Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Prog. Mater. Sci. 100, 170–186 (2019).

    Article  CAS  Google Scholar 

  50. Han, J., Du, G., Gao, W. & Bai, H. An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. 29, 1900412 (2019).

    Article  Google Scholar 

  51. Zhi, C., Bando, Y., Tang, C., Kuwahara, H. & Golberg, D. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 21, 2889–2893 (2009).

    Article  CAS  Google Scholar 

  52. Rasul, M. G., Kiziltas, A., Arfaei, B. & Shahbazian-Yassar, R. 2D boron nitride nanosheets for polymer composite materials. npj 2D Mater. Appl. 5, 56 (2021).

    Article  CAS  Google Scholar 

  53. Buttay, C. et al. State of the art of high temperature power electronics. Mater. Sci. Eng. B 176, 283–288 (2011).

    Article  CAS  Google Scholar 

  54. Loeblein, M. et al. High-density 3D-boron nitride and 3D-graphene for high-performance nano-thermal interface material. ACS Nano 11, 2033–2044 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  56. Weismiller, M. R., Van Duin, A. C., Lee, J. & Yetter, R. A. ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion. J. Phys. Chem. A 114, 5485–5492 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Senftle, T. P. et al. The ReaxFF reactive force-field: development, applications and future directions. npj Comput. Mater. 2, 15011 (2016).

    Article  CAS  Google Scholar 

  58. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model. Simul. Mat. Sci. Eng. 18, 015012 (2009).

    Article  Google Scholar 

  59. Verma, A., Zhang, W. & van Duin, A. C. T. ReaxFF reactive molecular dynamics simulations to study the interfacial dynamics between defective h-BN nanosheets and water nanodroplets. Phys. Chem. Chem. Phys. 23, 10822–10834 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was primarily supported by the National Key Research and Development Program of China (no. 2022YFA1205300 to Y.S.), the National Natural Science Foundation of China (no. 52188101 to H.-M.C. and no. 12232016 to H.W.), the Young Scientist Fund of the National Natural Science Foundation of China (no. 52102363 to J.Z.), the Scientific Research Start-up Funds of Tsinghua SIGS (QD2021026C to Y.S.), Peacock Team project (KQTD20210811090112002 to Y.S.) and Shenzhen Geim Graphene Center. F.W. acknowledges the support from the Youth Innovation Promotion Association CAS (no. 2020449). The numerical calculations were performed on the supercomputing system in the Hefei Advanced Computing Center.

Author information

Authors and Affiliations

Authors

Contributions

Y.S., H.-M.C. and J.Z. conceived the idea and supervised the project. Y.S., J.Z. and F.L. designed and performed the experiments and analysed the results. H.L. and D.X. performed the moulding of bulk graphite from rGO nanosheets. J.T. performed the transmission electron microscopy examination. J.D. helped with the compression tests. S.W. performed the nano-CT measurements; Z.L. performed the focused ion beam measurements; and Y.H., F.W. and H.W. performed the MD simulation. All authors analysed the data. Y.S., J.Z. and H.-M.C. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Yang Su or Hui-Ming Cheng.

Ethics declarations

Competing interests

J.Z., Y.S. and H.-M.C. report a Chinese patent (CN113929430A). The other authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Adri Van Duin, Chong Rae Park and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–9, Figs. 1–9, Tables 1 and 2 and Discussion.

Supplementary Video 1

Mechanically strong densified bulk hBN.

Source data

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Li, F., Hou, Y. et al. Near-room-temperature water-mediated densification of bulk van der Waals materials from their nanosheets. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01840-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01840-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing