Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly stabilized and efficient thermoelectric copper selenide

Abstract

The liquid-like feature of thermoelectric superionic conductors is a double-edged sword: the long-range migration of ions hinders the phonon transport, but their directional segregation greatly impairs the service stability. We report the synergetic enhancement in figure of merit (ZT) and stability in Cu1.99Se-based superionic conductors enabled by ion confinement effects. Guided by density functional theory and nudged elastic band simulations, we elevated the activation energy to restrict ion migrations through a cation–anion co-doping strategy. We reduced the carrier concentration without sacrificing the low thermal conductivity, obtaining a ZT of 3.0 at 1,050 K. Notably, the fabricated device module maintained a high conversion efficiency of up to 13.4% for a temperature difference of 518 K without obvious degradation after 120 cycles. Our work could be generalized to develop electrically and thermally robust functional materials with ionic migration characteristics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ion confinement effect leading to high thermoelectric ZT and conversion efficiency.
Fig. 2: Structure characterization at the atomic level.
Fig. 3: Electrical transport properties.
Fig. 4: Thermal transport properties, ZT values and service stability.

Similar content being viewed by others

Data availability

All data are available in the main text or Supplementary Information. Source data are provided with this paper.

References

  1. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Tan, G., Zhao, L. D. & Kanatzidis, M. G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116, 12123–12149 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Mao, J. et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 365, 495–498 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Wei, T.-R., Wu, C.-F., Li, F. & Li, J.-F. Low-cost and environmentally benign selenides as promising thermoelectric materials. J. Materiomics 4, 304–320 (2018).

    Article  Google Scholar 

  5. Pei, Y. et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Zhao, W. et al. Superparamagnetic enhancement of thermoelectric performance. Nature 549, 247–251 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, H. et al. Copper ion liquid-like thermoelectrics. Nat. Mater. 11, 422–425 (2012).

    Article  PubMed  Google Scholar 

  10. Zhang, Z. et al. Cu2Se-based liquid-like thermoelectric materials: looking back and stepping forward. Energy Environ. Sci. 13, 3307–3329 (2020).

    Article  CAS  Google Scholar 

  11. Yang, D. et al. Blocking ion migration stabilizes the high thermoelectric performance in Cu2Se composites. Adv. Mater. 32, e2003730 (2020).

    Article  PubMed  Google Scholar 

  12. Olvera, A. A. et al. Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se. Energy Environ. Sci. 10, 1668–1676 (2017).

    Article  CAS  Google Scholar 

  13. Qiu, P. et al. Suppression of atom motion and metal deposition in mixed ionic electronic conductors. Nat. Commun. 9, 2910 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee, J.-W., Tan, S., Seok, S. I., Yang, Y. & Park, N.-G. Rethinking the A cation in halide perovskites. Science 375, eabj1186 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, Y. et al. Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nat. Mater. 21, 1396–1402 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Nazrul Islam, S. M. K. et al. Copper diffusion rates and hopping pathways in superionic Cu2Se. Acta Mater. 215, 117026 (2021).

    Article  CAS  Google Scholar 

  17. Gao, Y. et al. Classical and emerging characterization techniques for investigation of ion transport mechanisms in crystalline fast ionic conductors. Chem. Rev. 120, 5954–6008 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, W. et al. Ag doping induced abnormal lattice thermal conductivity in Cu2Se. J. Mater. Chem. C 6, 13225–13231 (2018).

    Article  CAS  Google Scholar 

  19. Zhao, K. et al. Enhanced thermoelectric performance through tuning bonding energy in Cu2Se1–xSx liquid-like materials. Chem. Mater. 29, 6367–6377 (2017).

    Article  CAS  Google Scholar 

  20. Day, T. W. et al. Influence of compensating defect formation on the doping efficiency and thermoelectric properties of Cu2-ySe1–xBrx. Chem. Mater. 27, 7018–7027 (2015).

    Article  CAS  Google Scholar 

  21. Bailey, T. P. et al. Enhanced ZT and attempts to chemically stabilize Cu2Se via Sn doping. J. Mater. Chem. A 4, 17225–17235 (2016).

    Article  CAS  Google Scholar 

  22. Yang, L. et al. Te-doped Cu2Se nanoplates with a high average thermoelectric figure of merit. J. Mater. Chem. A 4, 9213–9219 (2016).

    Article  CAS  Google Scholar 

  23. Jin, Z. et al. Thermoelectric properties and service stability of Ag-containing Cu2Se. Mater. Today Phys. 21, 100550 (2021).

    Article  CAS  Google Scholar 

  24. Nazrul Islam, S. M. K. et al. Giant enhancement of the figure-of-merit over a broad temperature range in nano-boron incorporated Cu2Se. J. Mater. Chem. A 6, 18409–18416 (2018).

    Article  CAS  Google Scholar 

  25. Lei, J. et al. High thermoelectric performance in Cu2Se superionic conductor with enhanced liquid-like behaviour by dispersing SiC. J. Mater. Chem. A 7, 7006–7014 (2019).

    Article  CAS  Google Scholar 

  26. Nunna, R. et al. Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs. Energy Environ. Sci. 10, 1928–1935 (2017).

    Article  CAS  Google Scholar 

  27. Hu, X. et al. Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules. Energy Environ. Sci. 9, 517–529 (2016).

    Article  CAS  Google Scholar 

  28. Jiang, B. et al. Realizing high-efficiency power generation in low-cost PbS-based thermoelectric materials. Energy Environ. Sci. 13, 579–591 (2020).

    Article  CAS  Google Scholar 

  29. Xing, T. et al. High efficiency GeTe-based materials and modules for thermoelectric power generation. Energy Environ. Sci. 14, 995–1003 (2021).

    Article  CAS  Google Scholar 

  30. Zhang, Q. et al. Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites. Nano Energy 41, 501–510 (2017).

    Article  CAS  Google Scholar 

  31. Nie, G. et al. High performance thermoelectric module through isotype bulk heterojunction engineering of skutterudite materials. Nano Energy 66, 104193 (2019).

    Article  CAS  Google Scholar 

  32. Chu, J. et al. Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices. Nat. Commun. 11, 2723 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu, J. et al. Half-Heusler thermoelectric module with high conversion efficiency and high power density. Adv. Energy Mater. 10, 2000888 (2020).

    Article  CAS  Google Scholar 

  34. Xing, Y. et al. A device-to-material strategy guiding the ‘double-high’ thermoelectric module. Joule 4, 2475–2483 (2020).

    Article  CAS  Google Scholar 

  35. Fu, Y. et al. Mg3(Bi,Sb)2-based thermoelectric modules for efficient and reliable waste-heat utilization up to 750 K. Energy Environ. Sci. 15, 3265–3274 (2022).

    Article  CAS  Google Scholar 

  36. Bu, Z. et al. An over 10% module efficiency obtained using non-Bi2Te3 thermoelectric materials for recovering heat of <600 K. Energy Environ. Sci. 14, 6506–6513 (2021).

    Article  CAS  Google Scholar 

  37. Ying, P. et al. Towards tellurium-free thermoelectric modules for power generation from low-grade heat. Nat. Commun. 12, 1121 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bu, Z. et al. A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery. Nat. Commun. 13, 237 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qiu, P. et al. High-efficiency and stable thermoelectric module based on liquid-like materials. Joule 3, 1538–1548 (2019).

    Article  CAS  Google Scholar 

  40. Li, F. et al. Giant piezoelectricity of Sm-doped Pb (Mg1/3Nb2/3)O3–PbTiO3 single crystals. Science 364, 264–268 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Zhu, Y., Zhou, W., Sunarso, J., Zhong, Y. & Shao, Z. Phosphorus-doped perovskite oxide as highly efficient water oxidation electrocatalyst in alkaline solution. Adv. Funct. Mater. 26, 5862–5872 (2016).

    Article  CAS  Google Scholar 

  42. Yang, T. et al. One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells. Nat. Commun. 14, 839 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gahtori, B. et al. Giant enhancement in thermoelectric performance of copper selenide by incorporation of different nanoscale dimensional defect features. Nano Energy 13, 36–46 (2015).

    Article  CAS  Google Scholar 

  44. Dong, J. et al. Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance. Energy Environ. Sci. 12, 1396–1403 (2019).

    Article  CAS  Google Scholar 

  45. Yu, B. et al. Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer. Nano Energy 1, 472–478 (2012).

    Article  CAS  Google Scholar 

  46. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  47. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    Article  CAS  Google Scholar 

  48. Dudarev, S. L. et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  CAS  Google Scholar 

  49. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Basic Science Center Project of the National Natural Science Foundation of China (52388201) and the National Key R&D Program of China (2023YFB3809400). J.Y. gratefully acknowledges financial support from the International Postdoctoral Exchange Fellowship Program (Talent-Introduction Program) (YJ20220135) and Shuimu Tsinghua Scholar Program.

Author information

Authors and Affiliations

Authors

Contributions

H.H., J.Y. and J.-F.L. designed this work. H.H. prepared the samples and carried out the thermoelectric property measurements. Y. Ju, Z.W., H.Z. and J.Z. conducted the STEM observations and analysis. J.P., H.-C.T., Z.H. and B.-P.Z. carried out the DFT calculations. H.H. and J.Y. carried out the stability test. H.H., J.-W.L., B.C., F.L., H.-L.Z. and B.S. built the thermoelectric devices and performed the energy conversion efficiency measurements. H.-L.Z., B.S., H.L. and Q.L. provided helpful discussions. H.H. and Y. Jiang carried out the Hall measurements. All authors conceived the experiments, analysed the results and co-edited the manuscript.

Corresponding authors

Correspondence to Jincheng Yu, Jing Zhu or Jing-Feng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Pengfei Qiu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note, Figs. 1–21, Tables 1–3 and refs. 1 and 2.

Supplementary Data 1

Atomic coordinates of the computational models.

Source data

Source Data Fig. 1

Source data for Fig. 1a–c.

Source Data Fig. 2

Source data for Fig. 2c,f,g–i.

Source Data Fig. 3

Source data for Fig. 3a–d.

Source Data Fig. 4

Source data for Fig. 4a,b,e–j.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Ju, Y., Yu, J. et al. Highly stabilized and efficient thermoelectric copper selenide. Nat. Mater. 23, 527–534 (2024). https://doi.org/10.1038/s41563-024-01815-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-024-01815-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing