Letter | Published:

Electric-field switching of two-dimensional van der Waals magnets

Nature Materialsvolume 17pages406410 (2018) | Download Citation


Controlling magnetism by purely electrical means is a key challenge to better information technology1. A variety of material systems, including ferromagnetic (FM) metals2,3,4, FM semiconductors5, multiferroics6,7,8 and magnetoelectric (ME) materials9,10, have been explored for the electric-field control of magnetism. The recent discovery of two-dimensional (2D) van der Waals magnets11,12 has opened a new door for the electrical control of magnetism at the nanometre scale through a van der Waals heterostructure device platform13. Here we demonstrate the control of magnetism in bilayer CrI3, an antiferromagnetic (AFM) semiconductor in its ground state12, by the application of small gate voltages in field-effect devices and the detection of magnetization using magnetic circular dichroism (MCD) microscopy. The applied electric field creates an interlayer potential difference, which results in a large linear ME effect, whose sign depends on the interlayer AFM order. We also achieve a complete and reversible electrical switching between the interlayer AFM and FM states in the vicinity of the interlayer spin-flip transition. The effect originates from the electric-field dependence of the interlayer exchange bias.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotech. 10, 209–220 (2015).

  2. 2.

    Weisheit, M. et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007).

  3. 3.

    Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotech. 4, 158–161 (2009).

  4. 4.

    Wang, W.-G., Li, M., Hageman, S. & Chien, C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64–68 (2012).

  5. 5.

    Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

  6. 6.

    Chu, Y.-H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478–482 (2008).

  7. 7.

    Heron, J. T. et al. Electric-field-induced magnetization reversal in a ferromagnet–multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011).

  8. 8.

    Wu, S. M. et al. Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9, 756–761 (2010).

  9. 9.

    Borisov, P., Hochstrat, A., Chen, X., Kleemann, W. & Binek, C. Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 94, 117203 (2005).

  10. 10.

    He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579–585 (2010).

  11. 11.

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

  12. 12.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

  13. 13.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

  14. 14.

    Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, 1603113 (2017).

  15. 15.

    McGuire, M. A. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals 7, 121 (2017).

  16. 16.

    McGuire, M. A., Dixit, H., Cooper, V. R. & Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 27, 612–620 (2015).

  17. 17.

    Dillon, J. F. & Olson, C. E. Magnetization, resonance, and optical properties of the ferromagnet CrI3. J. Appl. Phys. 36, 1259–1260 (1965).

  18. 18.

    Sivadas, N., Okamoto, S. & Xiao, D. Gate-controllable magneto-optic Kerr effect in layered collinear antiferromagnets. Phys. Rev. Lett. 117, 267203 (2016).

  19. 19.

    Cracknell, A. P. Magnetism in Crystalline Materials: Applications of the Theory of Groups of Cambiant Symmetry (Pergamon: New York, NY, 1975).

  20. 20.

    Manfred, F. Revival of the magnetoelectric effect. J. Phys. D 38, R123 (2005).

  21. 21.

    Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

  22. 22.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

  23. 23.

    Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotech. 10, 534–540 (2015).

  24. 24.

    Wang, Z., Shan, J. & Mak, K. F. Valley- and spin-polarized Landau levels in monolayer WSe2. Nat. Nanotech. 12, 144–149 (2017).

  25. 25.

    Jacobs, I. S. & Lawrence, P. E. Metamagnetic phase transitions and hysteresis in FeCl2. Phys. Rev. 164, 866–878 (1967).

  26. 26.

    Rivera, J.-P. A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics. Eur. Phys. J. B 71, 299–313 (2009).

  27. 27.

    Weiglhofer, W. S. & Lakhtakia, A, (eds) Introduction to Complex Mediums for Optics and Electromagnetics. 175 (SPIE: Bellingham, 2003).

  28. 28.

    O’Dell, T. H. The Electrodynamics of Magneto-Electric Media (North-Holland, Amsterdam, 1970).

  29. 29.

    Rado, G. T. Mechanism of the magnetoelectric effect in an antiferromagnet. Phys. Rev. Lett. 6, 609–610 (1961).

  30. 30.

    Rado, G. T. Magnetoelectric evidence for the attainability of time-reversed antiferromagnetic configurations by metamagnetic transitions in DyPO4. Phys. Rev. Lett. 23, 644–647 (1969).

  31. 31.

    Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

  32. 32.

    Miyake, A., Sato, Y., Tokunaga, M., Jatmika, J. & Ebihara, T. Different metamagnetism between paramagnetic Ce and Yb isomorphs. Phys. Rev. B 96, 085127 (2017).

Download references


The research was supported the Air Force Office of Scientific Research under grant FA9550-16-1-0249 and the Army Research Office under grant W911NF-17-1-0605 for sample and device fabrication, and the Air Force Office of Scientific Research under grant FA9550- 14-1-0268 for optical spectroscopy measurements. Support for data analysis and modelling was provided by the National Science Foundation DMR-1410407 (J.S.), and a David and Lucille Packard Fellowship and a Sloan Fellowship (K.F.M.).

Author information


  1. Department of Physics and School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA

    • Shengwei Jiang
    • , Jie Shan
    •  & Kin Fai Mak
  2. Department of Physics, The Pennsylvania State University, University Park, PA, USA

    • Shengwei Jiang
    • , Jie Shan
    •  & Kin Fai Mak
  3. Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA

    • Jie Shan
    •  & Kin Fai Mak


  1. Search for Shengwei Jiang in:

  2. Search for Jie Shan in:

  3. Search for Kin Fai Mak in:


All the authors conceived and designed the experiments, analysed the data and co-wrote the manuscript. S.J. fabricated the devices and performed the measurements.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Jie Shan or Kin Fai Mak.

Supplementary information

  1. Supplementary Information

    13 Sections, 14 Figures, 19 references

About this article

Publication history