Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Proto-consonants were information-dense via identical bioacoustic tags to proto-vowels

Abstract

Why did our ancestors combine the first consonant- and vowel-like utterances to produce the first syllable or word? To answer this question, it is essential to know what constituted the communicative function of proto-consonants and of proto-vowels before their combined use became universal. Almost nothing is known, however, about consonant-like calls in the primate order1,2. Here, we investigate a large collection of voiceless consonant-like calls in nonhuman great apes (our closest relatives), namely orangutans (Pongo spp.). We analysed 4,486 kiss-squeaks collected across 48 individuals in four wild populations. Despite idiosyncratic production mechanics, consonant-like calls displayed information-dense content and the same acoustic signatures found in voiced vowel-like calls by nonhuman primates, implying similar biological functions. Selection regimes between proto-consonants and proto-vowels were thus probably indistinguishable at the dawn of spoken language evolution. Our findings suggest that the first proto-syllables or proto-words in our lineage probably constituted message reiterations, instead of messages of increasing intricacy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scatter plot representing orangutan kiss-squeaks along maximum frequency and duration.

Similar content being viewed by others

References

  1. Lameira, A. R., Maddieson, I. & Zuberbuhler, K. Primate feedstock for the evolution of consonants. Trends Cogn. Sci. 18, 60–62 (2014).

    Article  Google Scholar 

  2. Lameira, A. R. The forgotten role of consonant-like calls in theories of speech evolution. Behav. Brain Sci. 37, 559–560 (2014).

    Article  Google Scholar 

  3. Fitch, W. T. The evolution of speech: a comparative review. Trends Cogn. Sci. 4, 258–267 (2000).

    Article  CAS  Google Scholar 

  4. Fitch, W. T. & Zuberbühler, K. in The Evolution of Emotional Communication: From Sounds in Nonhuman Mammals to Speech and Music in Man (eds Altenmüller, E., Schmidt, S. & Zimmermann, E. ) 26–48 (Oxford Univ. Press, 2013).

    Book  Google Scholar 

  5. Lemasson, A., Ouattara, K. & Zuberbühler, K. in The Evolutionary Emergence of Language (eds Botha, R. & Everaert, M. ) 181–203 (Oxford Univ. Press, 2013).

    Book  Google Scholar 

  6. Taylor, A. M. & Reby, D. The contribution of source–filter theory to mammal vocal communication research. J. Zool. 280, 221–236 (2010).

    Article  Google Scholar 

  7. Luo, Z.-X., Ji, Q., Wible, J. R. & Yuan, C.-X. An Early Cretaceous tribosphenic mammal and metatherian evolution. Science 302, 1934–1940 (2003).

    Article  CAS  Google Scholar 

  8. Ni, X. et al. The oldest known primate skeleton and early haplorhine evolution. Nature 498, 60–64 (2013).

    Article  CAS  Google Scholar 

  9. Hardus, M. E., Lameira, A. R., van Schaik, C. P. & Wich, S. A. Tool use in wild orang-utans modifies sound production: a functionally deceptive innovation? Proc. R. Soc. B 276, 3689–3694 (2009).

    Article  Google Scholar 

  10. Lameira, A. R. et al. Population-specific use of the same tool-assisted alarm call between two wild orangutan populations (Pongopygmaeus wurmbii) indicates functional arbitrariness. PLoS ONE 8, e69749 (2013).

    Article  CAS  Google Scholar 

  11. Hobolth, A., Dutheil, J. Y., Hawks, J., Schierup, M. H. & Mailund, T. Incomplete lineage sorting patterns among human, chimpanzee, and orangutan suggest recent orangutan speciation and widespread selection. Genome Res. 21, 349–356 (2011).

    Article  CAS  Google Scholar 

  12. White, T. D., Lovejoy, C. O., Asfaw, B., Carlson, J. P. & Suwa, G. Neither chimpanzee nor human, Ardipithecus reveals the surprising ancestry of both. Proc. Natl Acad. Sci. USA 112, 4877–4884 (2015).

    Article  CAS  Google Scholar 

  13. Wich, S. A., Schel, A. M. & de Vries, H. Geographic variation in Thomas langur (Presbytis thomasi) loud calls. Am. J. Primatol. 70, 566–574 (2008).

    Article  Google Scholar 

  14. Fitch, W. T. Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques. J. Acoust. Soc. Am. 102, 1213–1222 (1997).

    Article  CAS  Google Scholar 

  15. Lameira, A. R. & Wich, S. Orangutan long call degradation and individuality over distance: a playback approach. Int. J. Primatol. 29, 615–625 (2008).

    Article  Google Scholar 

  16. Spillmann, B. et al. Acoustic properties of long calls given by flanged male orang-utans (Pongo pygmaeus wurmbii) reflect both individual identity and context. Ethology 116, 385–395 (2010).

    Article  Google Scholar 

  17. Hardus, M. E. et al. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S., Mitra Setia, T., Utami, S. S. & Schaik, C. P. ) 49–60 (Oxford Univ. Press, 2009).

    Google Scholar 

  18. Salmi, R., Hammerschmidt, K. & Doran-Sheehy, D. M. Western gorilla vocal repertoire and contextual use of vocalizations. Ethology 119, 831–847 (2013).

    Article  Google Scholar 

  19. Lameira, A. R. et al. Orangutan (Pongo spp.) whistling and implications for the emergence of an open-ended call repertoire: a replication and extension. J. Acoust. Soc. Am. 134, 1–11 (2013).

    Article  Google Scholar 

  20. Lameira, A. R. et al. Speech-like rhythm in a voiced and voiceless orangutan call. 10, e116136 (2015).

  21. De Boer, B., Wich, S. A., Hardus, M. E. & Lameira, A. R. Acoustic models of orangutan hand-assisted alarm calls. J. Exp. Biol. 218, 907–914 (2015).

    Article  Google Scholar 

  22. MacNeilage, P. F. The frame/content theory of evolution of speech production. Behav. Brain Sci. 21, 499–511 (1998).

    Article  CAS  Google Scholar 

  23. Ghazanfar, A. A., Takahashi, D. Y., Mathur, N. & Fitch, W. T. Cineradiography of monkey lip-smacking reveals putative precursors of speech dynamics. Curr. Biol. 22, 1176–1182 (2012).

    Article  CAS  Google Scholar 

  24. Waser, P. M. & Brown, C. H. Habitat acoustics and primate communication. Am. J. Primatol. 10, 135–154 (1986).

    Article  Google Scholar 

  25. Delgado, R. A. et al. in Orangutans: Geographic Variation in Behavioral Ecology and Conservation (eds Wich, S., Mitra Setia, T., Utami, S. S. & Schaik, C. P. ) 215–224 (Oxford Univ. Press, 2009).

    Google Scholar 

  26. R Development CoreTeam. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2010); http://www.gbif.org/resource/81287

  27. Bates, D., Maechler, M. & Dai, B. lme4: Linear-Mixed Effects Models Using S4 Classes (2008); http://cran.r-project.org/web/packages/lme4/lme4.pdf

  28. Puts, D. A. et al. Sexual selection on male vocal fundamental frequency in humans and other anthropoids. Proc. R. Soc. B 283, 20152830 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Indonesian Institute of Science (LIPI), the Indonesian Ministry of Research and Technology (RISTEK), the Indonesian Directorate General of Forest Protection and Nature Conservation (PHKA), Gunung Palung National Park Bureau (BTNGP), Gunung Leuser National Park (TNGL) and Leuser Ecosystem Management Authority (BPKEL) for authorization to carry out research in Indonesia. We thank Universitas National (UNAS), Tanjungpura University (UNTAN) and Universitas Sumatera Utara (USU) for supporting the project and acting as counter-partner. Bornean Orangutan Survival (BOS, Palangka Raya, Central Kalimantan), Sumatran Orangutan Conservation Programme (SOCP, Medan, North Sumatra) and Gunung Palung Orangutan Project (GPOCP, Ketapang, West Kalimantan) acted as sponsors. We thank M.-C. Pagano for technical support. R. Mundry and J. Kendal provided input on the design of the generalized linear mixed models, as did H. Colleran and S. Roberts at the First Quantitative Methods Spring School 2016 at the Max Plank Institute for the Science of Human History, Jena, Germany. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.R.L. conceived and designed the study. A.R.L., R.V., A.A. and M.E.H. collected data. A.R.L., R.V., A.A. and M.E.H. analysed data. A.R.L., G.C.-S., C.K. and S.W. contributed collection of materials and data, and analysis tools. A.R.L., G.C.-S., C.K., S.W. and M.E.H. wrote the manuscript.

Corresponding author

Correspondence to Adriano R. Lameira.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary Information

Supplementary Model (PDF 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lameira, A., Vicente, R., Alexandre, A. et al. Proto-consonants were information-dense via identical bioacoustic tags to proto-vowels. Nat Hum Behav 1, 0044 (2017). https://doi.org/10.1038/s41562-017-0044

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-017-0044

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing