Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Widespread two-layered melt structure in the asthenosphere

Abstract

Partial melts in the Earth’s convecting mantle influence its physical and chemical state, particularly the plasticity of the asthenosphere and the dynamics of plate tectonics. Melt compositions change systematically with the depth of mantle melting, but there are currently few quantitative constraints. Here we measure major and trace elements, combined with Hf–Nd isotope measurements, for basalts from North China. In addition, we compile a dataset of basalts from various oceanic and continental settings and find a quantitative link between the depth of basaltic melt extraction and its mean Y/Yb ratio. We show that a bimodal Y/Yb distribution is widespread in oceanic and continental basalts, consistent with two distinct depths of melt accumulation in the asthenosphere. Silica-rich basaltic melt accumulates at depths of 80–110 km and silica-poor, iron-rich melt at depths of 140–165 km, with a melt-free gap at a depth of 110–140 km. Our findings suggest that a two-layered melt structure may be more widespread in the asthenosphere than previously thought, particularly in areas of active or passive mantle upflow. The presence of two melt layers beneath fast-spreading plates and rifted continental margins may reduce the basal drag force on cratonic roots and aid with the breakup of cratons and supercontinents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A linear relationship between basaltic Y/Yb ratios and LAB/LVZ depths.
Fig. 2: Bimodal Y/Yb in the North China basalts.
Fig. 3: Mean Y/Yb ratios versus longitude and FeOtotal for the North China basalts.
Fig. 4: Vertical compositional stratification in the asthenosphere.
Fig. 5: Bimodal Y/Yb ratios and melt extraction depths for globally compiled oceanic/continental basalts.

Similar content being viewed by others

Data availability

All data that support the findings of this study are included in this published paper (and its Supplementary Information) and are available via Figshare at https://doi.org/10.6084/m9.figshare.25375873.v1 (ref. 74). Source data are provided with this paper.

References

  1. Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997).

    CAS  Google Scholar 

  2. Zindler, A. & Hart, S. R. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986).

    CAS  Google Scholar 

  3. Meyzen, C. M., Toplis, M. J., Humler, E., Ludden, J. N. & Mevel, C. A discontinuity in mantle composition beneath the southwest Indian ridge. Nature 421, 731–733 (2003).

    CAS  Google Scholar 

  4. Ren, Z. Y., Ingle, S., Takahashi, E., Hirano, N. & Hirata, T. The chemical structure of the Hawaiian mantle plume. Nature 436, 837–840 (2005).

    CAS  Google Scholar 

  5. Jackson, M. G. et al. Helium and lead isotopes reveal the geochemical geometry of the Samoan plume. Nature 514, 355–358 (2014).

    CAS  Google Scholar 

  6. Abouchami, W. et al. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature 434, 851–856 (2005).

    CAS  Google Scholar 

  7. Rohde, J. et al. 70 Ma chemical zonation of the Tristan–Gough hotspot track. Geology 41, 335–338 (2013).

    CAS  Google Scholar 

  8. Debayle, E., Bodin, T., Durand, S. & Ricard, Y. Seismic evidence for partial melt below tectonic plates. Nature 586, 555–559 (2020).

    CAS  Google Scholar 

  9. Naif, S., Key, K., Constable, S. & Evans, R. L. Melt-rich channel observed at the lithosphere–asthenosphere boundary. Nature 495, 356–359 (2013).

    CAS  Google Scholar 

  10. Sakamaki, T. et al. Ponded melt at the boundary between the lithosphere and asthenosphere. Nat. Geosci. 6, 1041–1044 (2013).

    CAS  Google Scholar 

  11. Schmerr, N. The Gutenberg discontinuity: melt at the lithosphere–asthenosphere boundary. Science 335, 1480–1483 (2012).

    CAS  Google Scholar 

  12. Chantel, J. et al. Experimental evidence supports mantle partial melting in the asthenosphere. Sci. Adv. 2, e1600246 (2016).

    Google Scholar 

  13. Hirschmann, M. M. Partial melt in the oceanic low velocity zone. Phys. Earth Planet. Inter. 179, 60–71 (2010).

    CAS  Google Scholar 

  14. Gardés, E., Laumonier, M., Massuyeau, M. & Gaillard, F. Unravelling partial melt distribution in the oceanic low velocity zone. Earth Planet. Sci. Lett. 540, 116242 (2020).

    Google Scholar 

  15. Liu, J. et al. Melting of recycled ancient crust responsible for the Gutenberg discontinuity. Nat. Commu. 11, 172 (2020).

    CAS  Google Scholar 

  16. Mierdel, K., Keppler, H., Smyth, J. R. & Langenhorst, F. Water solubility in aluminous orthopyroxene and the origin of Earth’s asthenosphere. Science 315, 364–368 (2007).

    CAS  Google Scholar 

  17. Wang, Y., Forsyth, D. W. & Savage, B. Convective upwelling in the mantle beneath the Gulf of California. Nature 462, 499–501 (2009).

    CAS  Google Scholar 

  18. Goes, S., Armitage, J., Harmon, N., Smith, H. & Huismans, R. Low seismic velocities below mid-ocean ridges: attenuation versus melt retention. J. Geophys. Res. 117, B12403 (2012).

    Google Scholar 

  19. Graham, D. W., Blichert-Toft, J., Russo, C. J., Rubin, K. H. & Albarede, F. Cryptic striations in the upper mantle revealed by hafnium isotopes in southeast Indian ridge basalts. Nature 440, 199–202 (2006).

    CAS  Google Scholar 

  20. Green, D. H. & Ringwood, A. E. The genesis of basaltic magmas. Contrib. Mineral. Petrol. 15, 103–190 (1967).

    CAS  Google Scholar 

  21. McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    CAS  Google Scholar 

  22. Zhang, J. B., Liu, Y. S., Ling, W. L. & Gao, S. Pressure-dependent compatibility of iron in garnet: Insights into the origin of ferropicritic melt. Geochim. Cosmochim. Acta 197, 356–377 (2017).

    CAS  Google Scholar 

  23. Davies, D. R., Rawlinson, N., Iaffaldano, G. & Campbell, I. H. Lithospheric controls on magma composition along Earth’s longest continental hotspot track. Nature 525, 511–514 (2015).

    CAS  Google Scholar 

  24. Wood, B. J., Kiseeva, E. S. & Matzen, A. K. Garnet in the Earth’s mantle. Elements 9, 421–426 (2013).

    CAS  Google Scholar 

  25. Hirschmann, M. M. Mantle solidus: experimental constraints and the effects of peridotite composition. Geochem. Geophys. Geosyst. 1, e2000GC000070 (2000).

  26. Liu, D. Y., Nutman, A. P., Compston, W., Wu, J. S. & Shen, Q. H. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology 20, 339–342 (1992).

    CAS  Google Scholar 

  27. Zhao, G. C., Wilde, S. A., Cawood, P. A. & Sun, M. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution. Precam. Res. 107, 45–73 (2001).

    CAS  Google Scholar 

  28. Griffin, W. L., Andi, Z., O’Reilly, S. Y. & Ryan, C. G. in Mantle Dynamics and Plate Interactions in East Asia 107–126 (American Geophysical Union, 2013).

  29. Chen, L., Zheng, T. Y. & Xu, W. W. A thinned lithospheric image of the Tanlu Fault Zone, eastern China: constructed from wave equation based receiver function migration. J. Geophys. Res. 111, 1–15 (2006).

    Google Scholar 

  30. Zeng, G., Chen, L. H., Hofmann, A. W., Jiang, S. Y. & Xu, X. S. Crust recycling in the sources of two parallel volcanic chains in Shandong, North China. Earth Planet. Sci. Lett. 302, 359–368 (2011).

    CAS  Google Scholar 

  31. Liu, Y. S., Gao, S., Kelemen, P. B. & Xu, W. L. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochim. Cosmochim. Acta 72, 2349–2376 (2008).

    CAS  Google Scholar 

  32. Long, X. G., Ballmer, M. D., Córdoba, A. M.-C. & Li, C. F. Mantle melting and intraplate volcanism due to self-buoyant hydrous upwellings from the stagnant slab that are conveyed by small-scale convection. Geochem. Geophys. Geosyst. 20, 4972–4997 (2019).

    Google Scholar 

  33. Huang, Z. X., Li, H. Y., Zheng, Y. J. & Peng, Y. J. The lithosphere of North China Craton from surface wave tomography. Earth Planet. Sci. Lett. 288, 164–173 (2009).

    CAS  Google Scholar 

  34. Rudnick, R. L. & Gao, S. in Treatise on Geochemistry (Second Edition) Vol. 4 (eds Holland, H. D. & Turekian, K. K.) 1–51 (Elsevier, 2014).

  35. Zhang, H. L. et al. Carbonated eclogitic component beneath eastern China revealed by olivine phenocrysts in nephelinites. Chem. Geol. 640, 121744 (2023).

    CAS  Google Scholar 

  36. Matsukage, K. N., Jing, Z. & Karato, S.-I. Density of hydrous silicate melt at the conditions of Earth’s deep upper mantle. Nature 438, 488–491 (2005).

    CAS  Google Scholar 

  37. Sakamaki, T., Suzuki, A. & Ohtani, E. Stability of hydrous melt at the base of the Earth’s upper mantle. Nature 439, 192–194 (2006).

    CAS  Google Scholar 

  38. Xu, M. et al. Sound velocity and compressibility of melts along the hedenbergite (CaFeSi2O6)-diopside (CaMgSi2O6) join at high pressure: implications for stability and seismic signature of Fe-rich melts in the mantle. Earth Planet. Sci. Lett. 577, 117250 (2022).

    CAS  Google Scholar 

  39. Hua, J. L., Fischer, K. M., Becker, T. W., Gazel, E. & Hirth, G. Asthenospheric low-velocity zone consistent with globally prevalent partial melting. Nat. Geosci. 16, 175–181 (2023).

    CAS  Google Scholar 

  40. Hyndman, R. D. & Canil, D. Geophysical and geochemical constraints on Neogene-Recent volcanism in the North American Cordillera. Geochem. Geophys. Geosyst. 22, e2021GC009637 (2021).

    CAS  Google Scholar 

  41. Canil, D. & Russell, J. K. Xenoliths reveal a hot Moho and thin lithosphere at the Cordillera-craton boundary of western Canada. Geology 50, 1135–1139 (2022).

    CAS  Google Scholar 

  42. Graw, J. H. et al. Upper mantle shear wave velocity structure beneath northern Victoria Land, Antarctica: volcanism and uplift in the northern Transantarctic Mountains. Earth Planet. Sci. Lett. 449, 48–60 (2016).

    CAS  Google Scholar 

  43. Wu, Z. et al. Lateral structural variation of the lithosphere–asthenosphere system in the Northeastern to Eastern Iranian Plateau and its tectonic implications. J. Geophys. Res. 126, e2020JB020256 (2021).

    Google Scholar 

  44. Brune, S., Williams, S. E., Butterworth, N. P. & Müller, R. D. Abrupt plate accelerations shape rifted continental margins. Nature 536, 201–204 (2016).

    CAS  Google Scholar 

  45. Arevalo, R. Jr & McDonough, W. F. Chemical variations and regional diversity observed in MORB. Chem. Geol. 271, 70–85 (2010).

    CAS  Google Scholar 

  46. Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Google Scholar 

  47. Rudnick, R. L., Gao, S., Ling, W. L., Liu, Y. S. & McDonough, W. F. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton. Lithos 77, 609–637 (2004).

    CAS  Google Scholar 

  48. Gao, S. et al. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet. Sci. Lett. 270, 41–53 (2008).

    CAS  Google Scholar 

  49. Liu, Y. S., Zong, K. Q., Kelemen, P. B. & Gao, S. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chem. Geol. 247, 133–153 (2008).

    CAS  Google Scholar 

  50. Gao, P. et al. The contributions of (meta-)sedimentary or granitic orthogneissic sources to the Cenozoic Himalayan granites. Contrib. Mineral. Petrol. 178, 46 (2023).

    CAS  Google Scholar 

  51. Zhang, W. & Hu, Z. A critical review of isotopic fractionation and interference correction methods for isotope ratio measurements by laser ablation multi-collector inductively coupled plasma mass spectrometry. Spectrochim. Acta Part B 171, 105929 (2020).

    CAS  Google Scholar 

  52. Sun, C. G. & Dasgupta, R. Thermobarometry of CO2-rich, silica-undersaturated melts constrains cratonic lithosphere thinning through time in areas of kimberlitic magmatism. Earth Planet. Sci. Lett. 550, 116549 (2020).

    CAS  Google Scholar 

  53. Evans, R. L. et al. Asymmetric electrical structure in the mantle beneath the East Pacific Rise at 17°S. Science 286, 752–756 (1999).

    CAS  Google Scholar 

  54. Evans, R. L. et al. Geophysical evidence from the MELT area for compositional controls on oceanic plates. Nature 437, 249–252 (2005).

    CAS  Google Scholar 

  55. Ying, J. F., Zhang, H. F., Kita, N., Morishita, Y. & Shimoda, G. Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China Craton: constraints from petrology and geochemistry of peridotitic xenoliths from Jünan, Shandong Province, China. Earth Planet. Sci. Lett. 244, 622–638 (2006).

    CAS  Google Scholar 

  56. Chen, L. H. et al. Sources of Anfengshan basalts: subducted lower crust in the Sulu UHP Belt, China. Earth Planet. Sci. Lett. 286, 426–435 (2009).

    CAS  Google Scholar 

  57. Zhang, J., Zhang, H. F., Ying, J. F., Tang, Y. J. & Niu, L. F. Contribution of subducted Pacific slab to Late Cretaceous mafic magmatism in Qingdao region, China: a petrological record. Isl. Arc 17, 231–241 (2008).

    CAS  Google Scholar 

  58. Chen, D. G., Peng, Z. C., Marvin, L. & Robert, Z. K–Ar ages and Pb, Sr isotopic characteristics of Cenozoic volcanic rocks in Shandong Province, China. Chin. J. Geochem. 4, 311–324 (1985).

    Google Scholar 

  59. Zeng, G. et al. Nephelinites in eastern China originating from the mantle transition zone. Chem. Geol. 576, 120276 (2021).

    CAS  Google Scholar 

  60. Tappe, S., Budde, G., Stracke, A., Wilson, A. & Kleine, T. The tungsten-182 record of kimberlites above the African superplume: exploring links to the core–mantle boundary. Earth Planet. Sci. Lett. 547, 116473 (2020).

    CAS  Google Scholar 

  61. Yang, Y. H. et al. In situ perovskite Sr–Nd isotopic constraints on the petrogenesis of the Ordovician Mengyin kimberlites in the North China Craton. Chem. Geol. 264, 24–42 (2009).

    CAS  Google Scholar 

  62. Cai, R. H., Liu, J. G., Sun, Y. & Gao, R. Phosphorus deficit in continental crust induced by recycling of apatite-bearing cumulates. Geology 51, 500–504 (2023).

    CAS  Google Scholar 

  63. Liu, C. Q. & Zhang, H. The lanthanide tetrad effect in apatite from the Altay No. 3 pegmatite, Xingjiang, China: an intrinsic feature of the pegmatite magma. Chem. Geol. 214, 61–77 (2005).

    CAS  Google Scholar 

  64. Zhang, G. L., Chen, L. H., Jackson, M. G. & Hofmann, A. W. Evolution of carbonated melt to alkali basalt in the South China Sea. Nat. Geosci. 10, 229–U105 (2017).

    CAS  Google Scholar 

  65. Tappe, S. et al. A fresh isotopic look at Greenland kimberlites: cratonic mantle lithosphere imprint on deep source signal. Earth Planet. Sci. Lett. 305, 235–248 (2011).

    CAS  Google Scholar 

  66. Nielsen, T. F. D., Jensen, S. M., Secher, K. & Sand, K. K. Distribution of kimberlite and aillikite in the Diamond Province of southern West Greenland: a regional perspective based on groundmass mineral chemistry and bulk compositions. Lithos 112, 358–371 (2009).

    Google Scholar 

  67. Pilet, S., Baker, M. B. & Stolper, E. M. Metasomatized lithosphere and the origin of alkaline lavas. Science 320, 916–919 (2008).

    CAS  Google Scholar 

  68. Humayun, M., Qin, L. P. & Norman, M. D. Geochemical evidence for excess iron in the mantle beneath Hawaii. Science 306, 91–94 (2004).

    CAS  Google Scholar 

  69. Le Roux, V., Lee, C. T. A. & Turner, S. J. Zn/Fe systematics in mafic and ultramafic systems: Implications for detecting major element heterogeneities in the Earth’s mantle. Geochim. Cosmochim. Acta 74, 2779–2796 (2010).

    Google Scholar 

  70. Dasgupta, R., Hirschmann, M. M. & Stalker, K. Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO2 and genesis of silica-undersaturated ocean island lavas. J. Petrol. 47, 647–671 (2006).

    CAS  Google Scholar 

  71. Rooney, T. O. et al. Melting the lithosphere: metasomes as a source for mantle-derived magmas. Earth Planet. Sci. Lett. 461, 105–118 (2017).

    CAS  Google Scholar 

  72. Giordano, D., Russell, J. K. & Dingwell, D. B. Viscosity of magmatic liquids: a model. Earth Planet. Sci. Lett. 271, 123–134 (2008).

    CAS  Google Scholar 

  73. Ueki, K. & Iwamori, H. Density and seismic velocity of hydrous melts under crustal and upper mantle conditions. Geochem. Geophys. Geosyst. 17, 1799–1814 (2016).

    CAS  Google Scholar 

  74. Data_JBZhang_Nature Geoscience_2024. Figshare https://doi.org/10.6084/m9.figshare.25375873.v1 (2024).

  75. Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: procedures, data sources and analysis. In NOAA Technical Memorandum NESDIS NGDC-24 1–19 (NGDC, NOAA 2009).

  76. Keshav, S. et al. Kimberlite petrogenesis: insights from clinopyroxene-melt partitioning experiments at 6 GPa in the CaO–MgO–Al2O3–SiO2–CO2 system. Geochim. Cosmochim. Acta 69, 2829–2845 (2005).

    CAS  Google Scholar 

  77. Hart, S. R. & Dunn, T. Experimental cpx/melt partitioning of 24 trace elements. Contrib. Mineral. Petrol. 113, 1–8 (1993).

    CAS  Google Scholar 

  78. Blundy, J. D., Robinson, J. A. C. & Wood, B. J. Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. Earth Planet. Sci. Lett. 160, 493–504 (1998).

    CAS  Google Scholar 

  79. Fabbrizio, A., Schmidt, M. W. & Petrelli, M. Effect of fO2 on Eu partitioning between clinopyroxene, orthopyroxene and basaltic melt: development of a Eu3+/Eu2+ oxybarometer. Chem. Geol. 559, 119967 (2021).

    CAS  Google Scholar 

  80. McDade, P., Blundy, J. D. & Wood, B. J. Trace element partitioning on the Tinaquillo Lherzolite solidus at 1.5 GPa. Phys. Earth Planet. Inter. 139, 129–147 (2003).

    CAS  Google Scholar 

  81. He, Z. W., Li, Y., Hou, Z. H. & Huang, F. Crystal vs. melt compositional effects on the partitioning of the first-row transition and high field strength elements between clinopyroxene and silicic, alkaline, aluminous melts. Am. Mineral. 108, 1924–1939 (2023).

  82. Gaschnig, R. M. et al. Compositional evolution of the upper continental crust through time, as constrained by ancient glacial diamictites. Geochim. Cosmochim. Acta 186, 316–343 (2016).

    CAS  Google Scholar 

  83. Gao, S. et al. Recycling lower continental crust in the North China Craton. Nature 432, 892–897 (2004).

    CAS  Google Scholar 

  84. Chu, Z. Y. et al. Temporal evolution of the lithospheric mantle beneath the eastern North China Craton. J. Petrol. 50, 1857–1898 (2009).

    CAS  Google Scholar 

  85. Borg, L. E. et al. Isotopic evidence for a young lunar magma ocean. Earth Planet. Sci. Lett. 523, 115706 (2019).

    CAS  Google Scholar 

  86. Day, J. M. D. et al. Martian magmatism from plume metasomatized mantle. Nat. Commun. 9, 4799 (2018).

    Google Scholar 

  87. Agashev, A. M., Pokhilenko, L. N., Pokhilenko, N. P. & Shchukina, E. V. Geochemistry of eclogite xenoliths from the Udachnaya Kimberlite Pipe: section of ancient oceanic crust sampled. Lithos 314-315, 187–200 (2018).

    CAS  Google Scholar 

  88. Barth, M. G. et al. Geochemistry of xenolithic eclogites from West Africa, part 2: origins of the high MgO eclogites. Geochim. Cosmochim. Acta 66, 4325–4345 (2002).

    CAS  Google Scholar 

  89. Barth, M. G. et al. Geochemistry of xenolithic eclogites from West Africa, part I: a link between low MgO eclogites and archean crust formation. Geochim. Cosmochim. Acta 65, 1499–1527 (2001).

    CAS  Google Scholar 

  90. Wessel, P. et al. The Generic Mapping Tools Version 6. Geochem. Geophys. Geosyst. 20, 5556–5564 (2019).

    Google Scholar 

  91. Herzberg, C. & Asimow, P. D. Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochem. Geophys. Geosyst. 9, Q09001 (2008).

    Google Scholar 

  92. Walter, W. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 39, 29–60 (1998).

    CAS  Google Scholar 

  93. Hirschmann, M. M., Kogiso, T., Baker, M. B. & Stolper, E. M. Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31, 481–484 (2003).

    CAS  Google Scholar 

  94. Kogiso, T., Hirschmann, M. M. & Frost, D. J. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth Planet. Sci. Lett. 216, 603–617 (2003).

    CAS  Google Scholar 

  95. Tuff, J. & Gibson, S. Trace-element partitioning between garnet, clinopyroxene and Fe-rich picritic melts at 3 to 7 GPa. Contrib. Mineral. Petrol. 153, 369–387 (2007).

    CAS  Google Scholar 

  96. Keshava, S., Gudfinnssonb, G. H., Sena, G. & Fei, Y. W. High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean-island basalts. Earth Planet. Sci. Lett. 223, 365–379 (2004).

    Google Scholar 

  97. Chauvel, C., Lewin, E., Carpentier, M., Arndt, N. T. & Marini, J.-C. Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nat. Geosci. 1, 64–67 (2008).

    CAS  Google Scholar 

  98. Agee, C. B. Crystal-liquid density inversions in terrestrial and lunar magmas. Phys. Earth Planet. Inter. 107, 63–74 (1998).

    CAS  Google Scholar 

  99. Buchs, D. M., Hoernle, K., Hauff, F. & Baumgartner, P. O. Evidence from accreted seamounts for a depleted component in the early Galapagos plume. Geology 44, 383–386 (2016).

    CAS  Google Scholar 

  100. Starkey, N. A. et al. Helium isotopes in early Iceland plume picrites: constraints on the composition of high 3He/4He mantle. Earth Planet. Sci. Lett. 277, 91–100 (2009).

    CAS  Google Scholar 

  101. Kumar, P. et al. The lithosphere–asthenosphere boundary in the North-West Atlantic region. Earth Planet. Sci. Lett. 236, 249–257 (2005).

    CAS  Google Scholar 

  102. Koornneef, J. M. et al. Melting of a two-component source beneath Iceland. J. Petrol. 53, 127–157 (2012).

    Google Scholar 

  103. Rickers, F., Fichtner, A. & Trampert, J. The Iceland–Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: evidence from full-waveform inversion. Earth Planet. Sci. Lett. 367, 39–51 (2013).

    CAS  Google Scholar 

  104. Magna, T., Wiechert, U., Stuart, F. M., Halliday, A. N. & Harrison, D. Combined Li–He isotopes in Iceland and Jan Mayen basalts and constraints on the nature of the North Atlantic mantle. Geochim. Cosmochim. Acta 75, 922–936 (2011).

    CAS  Google Scholar 

  105. Trønnes, R. G., Planke, S., Sundvoll, B. & Imsland, P. Recent volcanic rocks from Jan Mayen: low-degree melt fractions of enriched northeast Atlantic mantle. J. Geophys. Res. 104, 7153–7168 (1999).

    Google Scholar 

  106. Jackson, M. G., Weis, D. & Huang, S. Major element variations in Hawaiian shield lavas: source features and perspectives from global ocean island basalt (OIB) systematics. Geochem. Geophys. Geosyst. 13, Q09009 (2012).

    Google Scholar 

  107. Rychert, C. A., Laske, G., Harmon, N. & Shearer, P. M. Seismic imaging of melt in a displaced Hawaiian plume. Nat. Geosci. 6, 657–660 (2013).

    CAS  Google Scholar 

  108. Priestley, K. & Tilmann, F. Shear-wave structure of the lithosphere above the Hawaiian Hot Spot from two-station Rayleigh wave phase velocity measurements. Geophys. Res. Lett. 26, 1493–1496 (1999).

    Google Scholar 

  109. Ferguson, D. J. et al. Melting during late-stage rifting in Afar is hot and deep. Nature 499, 70–73 (2013).

    CAS  Google Scholar 

  110. Rooney, T. O. Geochemical evidence of lithospheric thinning in the southern Main Ethiopian Rift. Lithos 117, 33–48 (2010).

    CAS  Google Scholar 

  111. Rooney, T. O., Mohr, P., Dosso, L. & Hall, C. Geochemical evidence of mantle reservoir evolution during progressive rifting along the western Afar margin. Geochim. Cosmochim. Acta 102, 65–88 (2013).

    CAS  Google Scholar 

  112. Rychert, C. A. et al. Volcanism in the Afar Rift sustained by decompression melting with minimal plume influence. Nat. Geosci. 5, 406–409 (2012).

    CAS  Google Scholar 

  113. Wolff, J. A. et al. Petrogenesis of Pre-caldera mafic lavas, Jemez Mountains Volcanic Field (New Mexico, USA). J. Petrol. 46, 407–439 (2005).

    CAS  Google Scholar 

  114. Dungan, M. A. et al. Open system magmatic evolution of the Taos Plateau volcanic field, northern New Mexico: 1. The petrology and geochemistry of the Servilleta Basalt. J. Geophys. Res. 91, 5999 (1986).

    CAS  Google Scholar 

  115. Rogers, N. W., Hawkesworth, C. J. & Ormerod, D. S. Late Cenozoic basaltic magmatism in the Western Great Basin, California and Nevada. J. Geophys. Res. 100, 10287–10301 (1995).

    CAS  Google Scholar 

  116. Rau, C. J. & Forsyth, D. W. Melt in the mantle beneath the amagmatic zone, southern Nevada. Geology 39, 975–978 (2011).

    Google Scholar 

  117. Day, J. M. D., Pearson, D. G., Macpherson, C. G., Lowry, D. & Carracedo, J. C. Evidence for distinct proportions of subducted oceanic crust and lithosphere in HIMU-type mantle beneath El Hierro and La Palma, Canary Islands. Geochim. Cosmochim. Acta 74, 6565–6589 (2010).

    CAS  Google Scholar 

  118. Fullea, J., Camacho, A. G., Negredo, A. M. & Fernández, J. The Canary Islands hot spot: new insights from 3D coupled geophysical–petrological modelling of the lithosphere and uppermost mantle. Earth Planet. Sci. Lett. 409, 71–88 (2015).

    CAS  Google Scholar 

  119. Agranier, A. et al. The spectra of isotopic heterogeneities along the mid-Atlantic Ridge. Earth Planet. Sci. Lett. 238, 96–109 (2005).

    CAS  Google Scholar 

  120. Beier, C., Stracke, A. & Haase, K. M. The peculiar geochemical signatures of São Miguel (Azores) lavas: metasomatised or recycled mantle sources? Earth Planet. Sci. Lett. 259, 186–199 (2007).

    CAS  Google Scholar 

  121. Beier, C., Haase, K. M. & Turner, S. P. Conditions of melting beneath the Azores. Lithos 144–145, 1–11 (2012).

    Google Scholar 

  122. Beier, C. et al. Geochemical evidence for melting of carbonated peridotite on Santa Maria Island, Azores. Contrib. Mineral. Petrol. 165, 823–841 (2013).

    CAS  Google Scholar 

  123. Claude-Ivanaj, C., Joron, J.-L. & Allègre, C. J. 238U–230Th–226Ra fractionation in historical lavas from the Azores: long-lived source heterogeneity vs. metasomatism fingerprints. Chem. Geol. 176, 295–310 (2001).

    CAS  Google Scholar 

  124. Beier, C., Haase, K. M., Abouchami, W., Krienitz, M.-S. & Hauff, F. Magma genesis by rifting of oceanic lithosphere above anomalous mantle: Terceira Rift, Azores. Geochem. Geophys. Geosyst. 9, e2008GC002112 (2008).

  125. Debaille, V. et al. Geochemical component relationships in MORB from the Mid-Atlantic Ridge, 22–35°N. Earth Planet. Sci. Lett. 241, 844–862 (2006).

    CAS  Google Scholar 

  126. Elliott, T., Blichert-Toft, J., Heumann, A., Koetsier, G. & Forjaz, V. The origin of enriched mantle beneath São Miguel, Azores. Geochim. Cosmochim. Acta 71, 219–240 (2007).

    CAS  Google Scholar 

  127. Gale, A., Escrig, S., Gier, E. J., Langmuir, C. H. & Goldstein, S. L. Enriched basalts at segment centers: the Lucky Strike (37°17′N) and Menez Gwen (37°50′N) segments of the Mid-Atlantic Ridge. Geochem. Geophys. Geosyst. 12, Q06016 (2011).

    Google Scholar 

  128. Gale, A., Laubier, M., Escrig, S. & Langmuir, C. H. Constraints on melting processes and plume–ridge interaction from comprehensive study of the FAMOUS and North Famous segments, Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 365, 209–220 (2013).

    CAS  Google Scholar 

  129. Genske, F. S. et al. Comparing the nature of the western and eastern Azores mantle. Geochim. Cosmochim. Acta 172, 76–92 (2016).

    CAS  Google Scholar 

  130. Hamelin, C. et al. Atypically depleted upper mantle component revealed by Hf isotopes at Lucky Strike segment. Chem. Geol. 341, 128–139 (2013).

    CAS  Google Scholar 

  131. Hildenbrand, A., Weis, D., Madureira, P. & Marques, F. O. Recent plate re-organization at the Azores Triple Junction: evidence from combined geochemical and geochronological data on Faial, S. Jorge and Terceira volcanic islands. Lithos 210-211, 27–39 (2014).

    CAS  Google Scholar 

  132. Madureira, P., Mata, J., Mattielli, N., Queiroz, G. & Silva, P. Mantle source heterogeneity, magma generation and magmatic evolution at Terceira Island (Azores archipelago): constraints from elemental and isotopic (Sr, Nd, Hf, and Pb) data. Lithos 126, 402–418 (2011).

    CAS  Google Scholar 

  133. Millet, M.-A., Doucelance, R., Baker, J. A. & Schiano, P. Reconsidering the origins of isotopic variations in Ocean Island Basalts: insights from fine-scale study of São Jorge Island, Azores archipelago. Chem. Geol. 265, 289–302 (2009).

    CAS  Google Scholar 

  134. Larrea, P. et al. Magmatic evolution of Graciosa (Azores, Portugal). J. Petrol. 55, 2125–2154 (2014).

    CAS  Google Scholar 

  135. Moreira, M., Doucelance, R., Kurz, M. D., Dupré, B. & Allègre, C. J. Helium and lead isotope geochemistry of the Azores Archipelago. Earth Planet. Sci. Lett. 169, 189–205 (1999).

    CAS  Google Scholar 

  136. Pfänder, J. A., Münker, C., Stracke, A. & Mezger, K. Nb/Ta and Zr/Hf in ocean island basalts—implications for crust–mantle differentiation and the fate of Niobium. Earth Planet. Sci. Lett. 254, 158–172 (2007).

    Google Scholar 

  137. Turner, S., Hawkesworth, C., Rogers, N. & King, P. U–Th isotope disequilibria and ocean island basalt generation in the Azores. Chem. Geol. 139, 145–164 (1997).

    CAS  Google Scholar 

  138. Dosso, L. et al. The age and distribution of mantle heterogeneity along the Mid-Atlantic Ridge (31–41°N). Earth Planet. Sci. Lett. 170, 269–286 (1999).

    CAS  Google Scholar 

  139. Silveira, G. et al. Stratification of the Earth beneath the Azores from P and S receiver functions. Earth Planet. Sci. Lett. 299, 91–103 (2010).

    CAS  Google Scholar 

  140. Jørgensen, J. Ø. & Holm, P. M. Temporal variation and carbonatite contamination in primitive ocean island volcanics from São Vicente, Cape Verde Islands. Chem. Geol. 192, 249–267 (2002).

    Google Scholar 

  141. Holm, P. M. et al. Sampling the Cape Verde mantle plume: evolution of melt compositions on Santo Antão, Cape Verde Islands. J. Petrol. 47, 145–189 (2006).

    CAS  Google Scholar 

  142. Duprat, H. I., Friis, J., Holm, P. M., Grandvuinet, T. & Sørensen, R. V. The volcanic and geochemical development of São Nicolau, Cape Verde Islands: constraints from field and 40Ar/39Ar evidence. J. Volcanol. Geotherm. Res. 162, 1–19 (2007).

    CAS  Google Scholar 

  143. Barker, A. K., Holm, P. M., Peate, D. W. & Baker, J. A. Geochemical stratigraphy of submarine lavas (3–5 Ma) from the Flamengos Valley, Santiago, Southern Cape Verde Islands. J. Petrol. 50, 169–193 (2009).

    CAS  Google Scholar 

  144. Ancochea, E., Hernán, F., Huertas, M. J. & Brändle, J. L. A basic radial dike swarm of Boa Vista (Cape Verde Archipelago); its significance in the evolution of the island. J. Volcanol. Geotherm. Res. 243-244, 24–37 (2012).

    CAS  Google Scholar 

  145. Vinnik, L. et al. Cape Verde hotspot from the upper crust to the top of the lower mantle. Earth Planet. Sci. Lett. 319–320, 259–268 (2012).

    Google Scholar 

  146. Geist, D. J. et al. Submarine Fernandina: magmatism at the leading edge of the Galápagos hot spot. Geochem. Geophys. Geosyst. 7, Q12007 (2006).

    Google Scholar 

  147. Saal, A. E. et al. The role of lithospheric gabbros on the composition of Galapagos lavas. Earth Planet. Sci. Lett. 257, 391–406 (2007).

    CAS  Google Scholar 

  148. Byrnes, J. S. et al. An upper mantle seismic discontinuity beneath the Galápagos Archipelago and its implications for studies of the lithosphere–asthenosphere boundary. Geochem. Geophys. Geosyst. 16, 1070–1088 (2015).

    Google Scholar 

  149. Rychert, C. A., Harmon, N. & Ebinger, C. Receiver function imaging of lithospheric structure and the onset of melting beneath the Galápagos Archipelago. Earth Planet. Sci. Lett. 388, 156–165 (2014).

    CAS  Google Scholar 

  150. Fitton, J. G. & Godard, M. Origin and evolution of magmas on the Ontong Java Plateau. Geol. Soc. Spec. Lond. Pub. 229, 151–178 (2004).

    CAS  Google Scholar 

  151. Tharimena, S., Rychert, C. A. & Harmon, N. Seismic imaging of a mid-lithospheric discontinuity beneath Ontong Java Plateau. Earth Planet. Sci. Lett. 450, 62–70 (2016).

    CAS  Google Scholar 

  152. van der Meer, Q. H. A., Waight, T. E., Scott, J. M. & Münker, C. Variable sources for Cretaceous to recent HIMU and HIMU-like intraplate magmatism in New Zealand. Earth Planet. Sci. Lett. 469, 27–41 (2017).

    Google Scholar 

  153. Stern, T. A. et al. A seismic reflection image for the base of a tectonic plate. Nature 518, 85–88 (2015).

    CAS  Google Scholar 

  154. Hua, J., Fischer, K. M. & Savage, M. K. The lithosphere–asthenosphere boundary beneath the South Island of New Zealand. Earth Planet. Sci. Lett. 484, 92–102 (2018).

    CAS  Google Scholar 

  155. Xu, R. et al. Crust recycling induced compositional–temporal–spatial variations of Cenozoic basalts in the Trans-North China Orogen. Lithos 274-275, 383–396 (2017).

    CAS  Google Scholar 

  156. Chen, L., Cheng, C. & Wei, Z. Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton. Earth Planet. Sci. Lett. 286, 171–183 (2009).

    CAS  Google Scholar 

  157. Chen, L. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications. Lithos 120, 96–115 (2010).

    CAS  Google Scholar 

  158. Streck, M. J. & Grunder, A. L. Temporal and crustal effects on differentiation of tholeiite to calcalkaline and ferro‐trachytic suites, High Lava Plains, Oregon, USA. Geochem. Geophys. Geosyst. 13, e2012GC004237 (2012).

  159. Mangan, M. T., Wright, T. L., Swanson, D. A. & Byerly, G. R. Major Oxide, Trace Element, and Glass Chemistry Pertinent to Regional Correlation of Grande-Ronde Basalt Flows, Columbia River Basalt Group, Washington. Report No. 85-747 (US Geological Survey, 1985).

  160. Brandon, A. D. Constraints on magma genesis behind the Neogene Cascade Arc: evidence from major and trace element variation of high-alumina and tholeiitic volcanics of the Bear Creek Area. J. Geophys. Res. 94, 7775 (1989).

    CAS  Google Scholar 

  161. Hooper, P. R. & Hawkesworth, C. J. Isotopic and geochemical constraints on the origin and evolution of the Columbia River basalt. J. Petrol. 34, 1203–1246 (1993).

    CAS  Google Scholar 

  162. Hooper, P. R. Chemical discrimination of Columbia River basalt flows. Geochem. Geophys. Geosyst. 1, e2000GC000040 (2000).

  163. Hopper, E., Ford, H. A., Fischer, K. M., Lekic, V. & Fouch, M. J. The lithosphere–asthenosphere boundary and the tectonic and magmatic history of the northwestern United States. Earth Planet. Sci. Lett. 402, 69–81 (2014).

    CAS  Google Scholar 

  164. Sheth, H. C. et al. Geology and geochemistry of Pachmarhi dykes and sills, Satpura Gondwana Basin, central India: problems of dyke–sill–flow correlations in the Deccan Traps. Contrib. Mineral. Petrol. 158, 357 (2009).

    CAS  Google Scholar 

  165. Vanderkluysen, L., Mahoney, J. J., Hooper, P. R., Sheth, H. C. & Ray, R. The feeder system of the Deccan Traps (India): insights from dike geochemistry. J. Petrol. 52, 315–343 (2011).

    CAS  Google Scholar 

  166. Sheth, H. C., Zellmer, G. F., Kshirsagar, P. V. & Cucciniello, C. Geochemistry of the Palitana flood basalt sequence and the Eastern Saurashtra dykes, Deccan Traps: clues to petrogenesis, dyke–flow relationships, and regional lava stratigraphy. Bull. Volcanol. 75, 701 (2013).

    Google Scholar 

  167. Sheth, H. C. et al. The Deccan tholeiite lavas and dykes of Ghatkopar–Powai area, Mumbai, Panvel flexure zone: geochemistry, stratigraphic status, and tectonic significance. J. Asian Earth Sci. 84, 69–82 (2014).

    Google Scholar 

  168. Glišović, P. & Forte, A. M. On the deep-mantle origin of the Deccan Traps. Science 355, 613–616 (2017).

    Google Scholar 

  169. Chu, Z. Y. et al. Source of highly potassic basalts in northeast China: evidence from Re–Os, Sr–Nd–Hf isotopes and PGE geochemistry. Chem. Geol. 357, 52–66 (2013).

    CAS  Google Scholar 

  170. Zhao, Y.-W., Fan, Q.-C., Zou, H. & Li, N. Geochemistry of Quaternary basaltic lavas from the Nuomin volcanic field, Inner Mongolia: implications for the origin of potassic volcanic rocks in Northeastern China. Lithos 196–197, 169–180 (2014).

    Google Scholar 

  171. Zhang, M., Suddaby, P., Thompson, R. N., Thirlwall, M. F. & Menzies, A. H. Potassic volcanic rocks in NE China: geochemical constraints on mantle source and magma genesis. J. Petrol. 36, 1275–1303 (1995).

    CAS  Google Scholar 

  172. Liu, J.-Q. et al. Lithospheric thickness controlled compositional variations in potassic basalts of Northeast China by melt–rock interactions. Geophys. Res. Lett. 43, 2582–2589 (2016).

    CAS  Google Scholar 

  173. Jordan, S. C., Jowitt, S. M. & Cas, R. A. F. Origin of temporal–compositional variations during the eruption of Lake Purrumbete Maar, Newer Volcanics Province, southeastern Australia. Bull. Volcanol. 77, 883 (2014).

    Google Scholar 

  174. Nasir, S. J., Everard, J. L., McClenaghan, M. P., Bombardieri, D. & Worthing, M. A. The petrology of high pressure xenoliths and associated Cenozoic basalts from Northeastern Tasmania. Lithos 118, 35–49 (2010).

    CAS  Google Scholar 

  175. Price, R. C., Gray, C. M. & Frey, F. A. Strontium isotopic and trace element heterogeneity in the plains basalts of the Newer Volcanic Province, Victoria, Australia. Geochim. Cosmochim. Acta 61, 171–192 (1997).

    CAS  Google Scholar 

  176. Paul, B., Hergt, J. M. & Woodhead, J. D. Mantle heterogeneity beneath the Cenozoic volcanic provinces of central Victoria inferred from trace-element and Sr, Nd, Pb and Hf isotope data. Aust. J. Earth Sci. 52, 243–260 (2005).

    CAS  Google Scholar 

  177. O’Reilly, S. Y. & Zhang, M. Geochemical characteristics of lava-field basalts from eastern Australia and inferred sources: connections with the subcontinental lithospheric mantle? Contrib. Mineral. Petrol. 121, 148 (1995).

    Google Scholar 

  178. Vogel, D. C. & Keays, R. R. The petrogenesis and platinum-group element geochemistry of the Newer Volcanic Province, Victoria, Australia. Chem. Geol. 136, 181–204 (1997).

    CAS  Google Scholar 

  179. Mcbride, J. S., Lambert, D. D., Nicholls, I. A. & Price, R. C. Osmium isotopic evidence for crust–mantle interaction in the genesis of continental intraplate basalts from the Newer Volcanics Province, Southeastern Australia. J. Petrol. 42, 1197–1218 (2001).

    CAS  Google Scholar 

  180. Ford, H. A., Fischer, K. M., Abt, D. L., Rychert, C. A. & Elkins-Tanton, L. T. The lithosphere–asthenosphere boundary and cratonic lithospheric layering beneath Australia from Sp wave imaging. Earth Planet. Sci. Lett. 300, 299–310 (2010).

    CAS  Google Scholar 

  181. Kyle, P. R. in Volcanoes of the Antarctic Plate and Southern Oceans (eds LeMasurier, W. E. et al.) 18–145 (Wiley Online Library, 1990).

  182. Phillips, E. H. et al. The nature and evolution of mantle upwelling at Ross Island, Antarctica, with implications for the source of HIMU lavas. Earth Planet. Sci. Lett. 498, 38–53 (2018).

    CAS  Google Scholar 

  183. Rasmussen, D. J. et al. Understanding degassing and transport of CO2-rich alkalic magmas at Ross Island, Antarctica using olivine-hosted melt inclusions. J. Petrol. 58, 841–861 (2017).

    CAS  Google Scholar 

  184. Jenner, F. E. & O’Neill, H. S. C. Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem. Geophys. Geosyst. 13, 1–11 (2012).

    Google Scholar 

  185. Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. & Schilling, J.-G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–518 (2013).

    CAS  Google Scholar 

  186. Gaherty, J. B., Jordan, T. H. & Gee, L. S. Seismic structure of the upper mantle in a central Pacific corridor. J. Geophys. Res. 101, 22291–22309 (1996).

    Google Scholar 

  187. Weeraratne, D. S., Forsyth, D. W., Yang, Y. J. & Webb, S. C. Rayleigh wave tomography beneath intraplate volcanic ridges in the South Pacific. J. Geophys. Res. 112, B06303 (2007).

  188. Yang, Y. J., Forsyth, D. W. & Weeraratne, D. S. Seismic attenuation near the East Pacific Rise and the origin of the low-velocity zone. Earth Planet. Sci. Lett. 258, 260–268 (2007).

    CAS  Google Scholar 

  189. Dai, L.-Q., Zhao, Z.-F., Zheng, Y.-F., An, Y.-J. & Zheng, F. Geochemical distinction between carbonate and silicate metasomatism in generating the mantle sources of alkali basalts. J. Petrol. 58, 863–884 (2017).

    CAS  Google Scholar 

  190. Lai, S.-C., Qin, J.-F. & Khan, J. The carbonated source region of Cenozoic mafic and ultra-mafic lavas from western Qinling: implications for eastern mantle extrusion in the northeastern margin of the Tibetan Plateau. Gondwana Res. 25, 1501–1516 (2014).

    CAS  Google Scholar 

  191. Dai, L.-Q., Zheng, F., Zhao, Z.-F. & Zheng, Y.-F. Geochemical insights into the lithology of mantle sources for Cenozoic alkali basalts in West Qinling, China. Lithos 302–303, 86–98 (2018).

    Google Scholar 

  192. Guo, P., Niu, Y. & Yu, X. A synthesis and new perspective on the petrogenesis of kamafugites from West Qinling, China, in a global context. J. Asian Earth Sci. 79, 86–96 (2014).

    Google Scholar 

  193. Dong, X. et al. Geochemistry of the Cenozoic Kamafugites from west Qinling and its constraint for the nature of magma source region. Acta Petrol. Sin. 24, 238–248 (2008).

    Google Scholar 

  194. Yu, X. H. et al. Trace elements, REE and Sr, Nd, Pb isotopic geochemistry of Cenozoic kamafugite and carbonatite from West Qinling, Gansu Province: implication of plume–lithosphere interaction. Acta Petrol. Sin. 20, 483–494 (2004).

    Google Scholar 

  195. Sun, W. J. & Kennett, B. L. N. Mid-lithosphere discontinuities beneath the western and central North China Craton. Geophys. Res. Lett. 44, 2016GL071840 (2017).

    Google Scholar 

  196. Ali, S., Ntaflos, T. & Upton, B. G. J. Petrogenesis and mantle source characteristics of Quaternary alkaline mafic lavas in the western Carpathian–Pannonian Region, Styria, Austria. Chem. Geol. 337–338, 99–113 (2013).

    Google Scholar 

  197. Kind, R. et al. Detection of a new sub-lithospheric discontinuity in Central Europe with S-receiver functions. Tectonophysics 700–701, 19–31 (2017).

    Google Scholar 

  198. Plomerová, J. & Babuška, V. Long memory of mantle lithosphere fabric—European LAB constrained from seismic anisotropy. Lithos 120, 131–143 (2010).

    Google Scholar 

  199. Ulrych, J. et al. Recurrent Cenozoic volcanic activity in the Bohemian Massif (Czech Republic). Lithos 123, 133–144 (2011).

    CAS  Google Scholar 

  200. Ulrych, J., Svobodová, J. & Balogh, K. The source of Cenozoic volcanism in the České středohoří Mts., Bohemian Massif. J. Mineral. Geochem. 177, 133–162 (2002).

    CAS  Google Scholar 

  201. Plomerová, J., Vecsey, L. & Babuška, V. Mapping seismic anisotropy of the lithospheric mantle beneath the northern and eastern Bohemian Massif (central Europe). Tectonophysics 564–565, 38–53 (2012).

    Google Scholar 

  202. Pilet, S., Hernandez, J., Sylvester, P. & Poujol, M. The metasomatic alternative for ocean island basalt chemical heterogeneity. Earth Planet. Sci. Lett. 236, 148–166 (2005).

    CAS  Google Scholar 

  203. Oeser, M., Dohmen, R., Horn, I., Schuth, S. & Weyer, S. Processes and time scales of magmatic evolution as revealed by Fe–Mg chemical and isotopic zoning in natural olivines. Geochim. Cosmochim. Acta 154, 130–150 (2015).

    CAS  Google Scholar 

  204. Babuška, V., Plomerová, J., Vecsey, L., Granet, M. & Achauer, U. Seismic anisotropy of the French Massif Central and predisposition of Cenozoic rifting and volcanism by Variscan suture hidden in the mantle lithosphere. Tectonics 21, 11-11–11-20 (2002).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (grants 42173051 and 42050201 to J.-B.Z.), the Key Research & Development Program of China (2019YFA0708400 to Y.-S.L.) and the MOST Special Funds of the State Key Laboratory of Geological Processes and Mineral Resources (MSFGPMR01 to Y.-S.L.). S.F.F. is funded by ARC grant FL180100134. We are grateful to H.-H. Chen for assistance with the ICP-MS analyses, and to K.-Q. Zong for access to samples. We also thank W. McDonough, C.-T. Lee and S. Wilde for their insightful suggestions on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.-B.Z. and Y.-S.L. designed the research. J.-B.Z. analysed the data. All authors participated in the discussion and interpretation of results, and preparation of the manuscript.

Corresponding author

Correspondence to Yong-Sheng Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks John Hernlund, Maxim Ballmer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Hunt and Rebecca Neely, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Compilations of global basalt Y/Yb ratios and geophysically determined LVZ/LAB depths
Extended Data Table 2 Composition and calculated density and viscosity of the North China lavas, MORB and Hawaii OIB

Extended Data Fig. 1 Map showing locations of globally-compiled oceanic and continental basalts.

Circle, location of geophysically determined LVZ/LAB; Pentagram, location of two melt layers inferred from Y/Yb ratios; Square, location of a geophysically determined double LVZ. Note that two-layered melts occur most frequently below the Pacific plate (Hikurangi Plateau, Hawaii, Samoa, Marquesas and Society Islands), continental margins (North America, South America, Africa, Australia, Antarctica and East Asia), continental rifts (Baikal rift, Red Sea rift and the Gulf of California) and rifted microcontinents (Zealandia, Mauritius, Arabia and Iran). Global topological map was downloaded from the National Oceanic and Atmospheric Administration (NOAA) website (http://www.ngdc.noaa.gov/)75.

Extended Data Fig. 2 Y and Yb partitioning in major mantle minerals.

a−c, Y and Yb partition coefficients between minerals (clinopyroxene, orthopyroxene and olivine) and silicate melt as a function of pressure. Error bars are 1 SD and are smaller than symbol size where absent. Experimental data are presented as mean values ± 1 SD. Partitioning data for clinopyroxene (cpx): 6 GPa and 1410 °C76; 3 GPa and 1380 °C77; 1.5 GPa and temperature of 1255–1315 °C78,79,80; 1 atm and 1080−1100 °C81. Partitioning data for orthopyroxene and olivine at 1.5 GPa and 1275–1315 °C are from refs. 79,80. d, Y and Yb partition coefficients between (peridotitic versus pyroxenitic) garnet and silicate melt as a function of pressure or temperature. Experimental data from ref. 22. The solidus of nominally dry peridotite as a function of pressure (0 to 8 GPa) was taken from Hirschmann25. Note that Y and Yb are highly incompatible in olivine (D < 0.05), and so olivine would play a very limited effect on melt Y/Yb ratios during peridotite mantle melting. We also note that Y and Yb partition coefficients in (peridotitic versus pyroxenitic) garnet are temperature- and pressure-dependent and decrease with increasing pressure and temperature. Considering that the solidus increases with pressure25, it is reasonably to suggest that DY, Ybgarnet/melt are highly pressure-dependent. e, Calculated DY/Yb between garnet/cpx and silicate melt as a function of pressure. The green model line was calculated by exponentially weighted moving average (the same data as DYb and DY in b22). f, Calculated Y/Yb ratios of silicate melt (assumed to be equilibrated with mantle with varying cpx-garnet modal proportions) as a function of pressure.

Extended Data Fig. 3 Y/Yb systematics of terrestrial rocks.

a, Plots of Y versus Yb and Y/Yb versus Fe2O3 for the Xu-Huai eclogite/garnet-pyroxenites. b, Plot of Y versus Yb for xenolithic spinel-facies peridotites in Cenozoic basalts from the eastern NCC. Spinel-facies peridotites have Y and Yb contents lower than primitive mantle values but near-chondritic Y/Yb ratios, indicating that melting of peridotites within the spinel stability field does not fractionate Y from Yb significantly. c, Y/Yb values of oceanic and continental crust. d, Plot of Y versus Yb for global MORB, Moon and Mars. The Moon and Mars have chondritic Y/Yb values, implying that planetary differentiation could not fractionate Y from Yb. e, Plots of Y versus Yb and Y/Yb ratio versus K2O for ancient glacial diamictites. Fine-grained glacial diamictites deposited in the Mesoarchean, Paleoproterozoic, Neoproterozoic, and Paleozoic eras define a positive relationship between Y and Yb (R2 = 0.98) and have chondritic Y/Yb ratios (Y/Yb = 9.81 ± 0.65, 1 SD), which are independent of K2O content (potassium is known as a highly fluid-mobile element, and is sensitive to chemical weathering34). In particular, these glacial diamictites have high CIA (chemical index of alteration, a measure of chemical weathering intensity) ranging from 54 to 89, and show decoupled variation between Y/Yb ratios and CIA82. These observations indicate that the fractionation of the Y/Yb ratio is insensitive to chemical weathering of upper crustal rocks. Data sources: Xu-Huai eclogite/garnet-pyroxenite xenoliths83 and peridotite xenoliths in Cenozoic basalts84 from the eastern NCC; continental crust34; chondrite and primitive mantle21; Moon85; Mars86; glacial diamictite82; Siberian Udachnaya eclogites87; Koidu low- and high-MgO eclogites from West Africa88,89. LCC, MCC and UCC represent lower, middle and upper continental crust, respectively34. The horizontal or vertical shaded areas in a, c and e represent the upper and lower bounds based on mean values ± 1 SD. Error bars in c are 1 SD and are smaller than symbol size where absent. Data in c are presented as mean values ± 1 SD. R2, correlation coefficient. Full data for MORB (including Pacific, Indian, Atlantic, Arctic, Pacific-Antarctic, Ninetyeast, Galapagos Spreading Center, South China Sea and Juan de Fuca) are listed in Supplementary Table 1.

Extended Data Fig. 4 Regional maps and seismic observations.

a, Sketch map of main tectonic units in the North China craton (NCC)83. WB, TNCO and EB denote three-fold division of the North China craton into the Western Block, Trans-North China Orogen and Eastern Block, respectively27. b, Imaged depth distributions (latitude 36.38°N) of the present-day continental Mohorovičić discontinuity (Moho) and lithosphere–asthenosphere boundary (LAB) below Shandong, North China29. c, Distribution of Late Cretaceous to Cenozoic volcanoes (yellow) of various ages in Shandong, North China (modified from refs. 22,30,59). Also shown is locality of Paleozoic diamondiferous kimberlites from Mengyin (North China). Topological map in c was created using the Generic Mapping Tools (GMT) (https://www.generic-mapping-tools.org/)90, and all GMT data can be available through GitHub at https://github.com/GenericMappingTools.

Extended Data Fig. 5 Major element compositions of the North China basalts, compared with experimental partial melts.

a, b, Na2O + K2O and Fe2O3 versus SiO2. c, d, Fe2O3 and Fe/Mn versus MgO. e, f, CaO versus MgO and SiO2. The shaded area in (e) denotes primary partial melts of peridotite91. Lavas with CaO contents that are lower than those defined by the red line are potentially partial melts of pyroxenite or high-degree partial melts of peridotite that experienced olivine fractional crystallization91,92. Data sources: peridotite partial melts (3–7 GPa)92; garnet pyroxenite partial melts (2.5–7 GPa, 1400–1750 °C)93,94,95,96; amphibolite and amphibolite-DMM (depleted MORB peridotite) partial melts (1.5 GPa, 1150–1400 °C)67; Hawaii (Kilauea, Loihi, Mauna Loa, and Hualalai) lavas and MORB68; carbonated eclogite partial melts70. Full data of the North China basalts are provided in Supplementary Table 2.

Extended Data Fig. 6 Effects of lithospheric contamination.

a, Plot of Y/Yb versus Yb for basalts, diamondiferous kimberlites and spinel-facies peridotite xenoliths enclosed in Cenozoic basalts from the eastern NCC. The horizontal shaded areas represent the upper and lower bounds based on mean values ± 1 SD. The dark red curves are trends showing basaltic melts contaminated by lithospheric mantle with the composition of spinel-facies peridotites from the eastern NCC. The above modelling indicates that the low Y/Yb basaltic melts did not originate from lithospheric contamination of a high Y/Yb basaltic melt. b, εHf and εNd values of basalts and spinel-facies peridotite xenoliths. εHf and ΔHf values of basalts and diamondiferous kimberlites are also shown. ΔHf = εHf – (1.59εNd + 1.28). R2, correlation coefficient. Data sources: primitive mantle21 and peridotite xenoliths in Cenozoic basalts84 from the eastern NCC; the mantle array line: εHf = 1.59εNd + 1.2897. Full data of the North China basalts and Mengyin diamondiferous kimberlites are provided in Supplementary Table 2.

Source data

Extended Data Fig. 7 Densities of various silicate melts as a function of pressure, compared with those of surrounding solid mantle (Fo90 as representative)98.

LAB = lithosphere-asthenosphere boundary. LVZ = low-velocity zone. Melt densities are provided in Extended Data Table 2. Also shown are depths of LAB29 and bottom of LVZ33 beneath the eastern NCC. High Y/Yb basalts and Laoheishan iron-rich basalt (15LHS05; Fe2O3 = 16.57 wt%) have densities close to the surrounding solid mantle at 5 GPa, implying that iron-rich silicate melts may be gravitationally stable at depths of ~150 km in the asthenosphere.

Extended Data Fig. 8 Variations of shear wave velocity (Vs) along latitude 37°N in Shandong, North China.

Seismic images are from ref. 33.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Tables 1–4 and references.

Supplementary Table 1

Compositions of globally compiled oceanic and continental basalts.

Supplementary Table 2

Compositions of the North China basalts and diamondiferous kimberlites.

Supplementary Table 3

Bimodal Y/Yb ratios of globally compiled basalts.

Source data

Source Data Fig. 2

Major and trace element compositions of the North China basalts and diamondiferous kimberlites.

Source Data Extended Data Fig. 6

Hf–Nd isotopic compositions of the North China basalts and diamondiferous kimberlites.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JB., Liu, YS., Foley, S.F. et al. Widespread two-layered melt structure in the asthenosphere. Nat. Geosci. 17, 472–477 (2024). https://doi.org/10.1038/s41561-024-01433-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-024-01433-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing