Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vestiges of a lunar ilmenite layer following mantle overturn revealed by gravity data

Abstract

The lunar crust and mantle formed through the crystallization of a magma ocean, culminating in a solid cumulate mantle with a layer of dense ilmenite-bearing cumulates rich in incompatible elements forming above less dense cumulates. This gravitationally unstable configuration probably resulted in a global mantle overturn, with ilmenite-bearing cumulates sinking into the interior. However, despite abundant geochemical evidence, there has been a lack of physical evidence on the nature of the overturn. Here we combine gravity inversions together with geodynamic models to shed light on this critical stage of lunar evolution. We show that the observed polygonal pattern of linear gravity anomalies that surround the nearside mare region is consistent with the signature of the ilmenite-bearing cumulates that remained after the global mantle overturn at the locations of past sheet-like downwellings. This interpretation is supported by the compelling similarity between the observed pattern, magnitude and dimensions of the gravity anomalies and those predicted by geodynamic models of the ilmenite-bearing cumulate remnants. These features provide physical evidence for the nature of the global mantle overturn, constrain the overturn to have occurred before the Serenitatis and Humorum basin-forming impacts and support a deep Ti-rich mantle source for the high-Ti basalts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global maps of lunar topography, surface abundance of TiO2 and Bouguer gravity gradient.
Fig. 2: Forward-modelled Bouguer gravity gradient anomalies associated with the IBCs.
Fig. 3: Results from the MCMC model runs.
Fig. 4: IBC thickness distribution over the PKT border anomalies from gravity analyses and geodynamic models.

Similar content being viewed by others

Data availability

The gravity field model from refs. 21,45 can be found at https://pds-geosciences.wustl.edu/grail/grail-l-lgrs-5-rdr-v1/grail_1001/shadr/, and the topography model from refs. 40,46 can be obtained at https://zenodo.org/records/3870924. The MCMC, gravity–topography inversion and IBC thickness results required to reproduce key figures in this Article are provided in a Zenodo repository (LiangBroquetIBC, https://zenodo.org/records/10389616).

Code availability

The Markov chain Monte Carlo model from ref. 26 can be found at https://zenodo.org/records/10622788. The topography and gravity inversion model from ref. 28 can be found at https://zenodo.org/records/10552129.

References

  1. Hiesinger, H., Head, J. W. III, Wolf, U., Jaumann, R. & Neukum, G. in Recent Advances and Current Research Issues in Lunar Stratigraphy vol. 477 (eds Ambrose, W. A., & Williams, D. A.) 1–51 (Geological Society of America, 2011).

  2. Head, J. W. Lunar mare deposits: areas, volumes, sequence, and implication for melting in source areas. In Conference on the Origins of Mare Basalts and their Implications for Lunar Evolution vol. 234, 66–69 (1975).

  3. Wieczorek, M. A. & Phillips, R. J. The ‘Procellarum KREEP Terrane’: implications for mare volcanism and lunar evolution. J. Geophys. Res. Planets 105, 20417–20430 (2000).

    Article  CAS  Google Scholar 

  4. Lucey, P. G., Spudis, P. D., Zuber, M., Smith, D. & Malaret, E. Topographic-compositional units on the moon and the early evolution of the lunar crust. Science 266, 1855–1858 (1994).

    Article  CAS  Google Scholar 

  5. Sato, H. et al. Lunar mare TiO2 abundances estimated from UV/Vis reflectance. Icarus 296, 216–238 (2017).

    Article  CAS  Google Scholar 

  6. Shearer, C. et al. Magmatic evolution II: a new view of post-differentiation magmatism. Rev. Mineral. Geochem. 89, 147–206 (2023).

    Article  Google Scholar 

  7. Hess, P. C. & Parmentier, E. M. A model for the thermal and chemical evolution of the Moon’s interior: implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 134, 501–514 (1995).

    Article  CAS  Google Scholar 

  8. Elkins-Tanton, L. T., Burgess, S. & Yin, Q.-Z. The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet. Sci. Lett. 304, 326–336 (2011).

    Article  CAS  Google Scholar 

  9. Schaefer, L. & Elkins-Tanton, L. T. Magma oceans as a critical stage in the tectonic development of rocky planets. Philos. Trans. Royal Soc. A 376, 20180109 (2018).

    Article  Google Scholar 

  10. Schmidt, M. W. & Kraettli, G. Experimental crystallization of the lunar magma ocean, initial selenotherm and density stratification, and implications for crust formation, overturn and the bulk silicate moon composition. J. Geophys. Res. Planets 127, e2022JE007187 (2022).

    Article  CAS  Google Scholar 

  11. Zhong, S., Parmentier, E. M. & Zuber, M. T. A dynamic origin for the global asymmetry of lunar mare basalts. Earth Planet. Sci. Lett. 177, 131–140 (2000).

    Article  CAS  Google Scholar 

  12. Zhang, N., Parmentier, E. M. & Liang, Y. A 3-D numerical study of the thermal evolution of the Moon after cumulate mantle overturn: the importance of rheology and core solidification. J. Geophys. Res. Planets 118, 1789–1804 (2013).

    Article  CAS  Google Scholar 

  13. Elkins Tanton, L. T., Van Orman, J. A., Hager, B. H. & Grove, T. L. Re-examination of the lunar magma ocean cumulate overturn hypothesis: melting or mixing is required. Earth Planet. Sci. Lett. 196, 239–249 (2002).

    Article  CAS  Google Scholar 

  14. Prettyman, T. H. et al. Elemental composition of the lunar surface: analysis of gamma ray spectroscopy data from Lunar Prospector. J. Geophys. Res. Planets 111, E12007 (2006).

    Article  Google Scholar 

  15. Zhu, M.-H., Wünnemann, K., Potter, R. W. K., Kleine, T. & Morbidelli, A. Are the Moon’s nearside–farside asymmetries the result of a giant impact? J. Geophys. Res. Planets 124, 2117–2142 (2019).

    Article  Google Scholar 

  16. Jutzi, M. & Asphaug, E. Forming the lunar farside highlands by accretion of a companion moon. Nature 476, 69–72 (2011).

    Article  CAS  Google Scholar 

  17. Schultz, P. H. & Crawford, D. A. in Recent Advances and Current Research Issues in Lunar Stratigraphy vol. 477 (eds Ambrose, W. A. & Williams, D. A.) 141–159 (Geological Society of America, 2011).

  18. Parmentier, E. M., Zhong, S. & Zuber, M. T. Gravitational differentiation due to initial chemical stratification: origin of lunar asymmetry by the creep of dense KREEP? Earth Planet. Sci. Lett. 201, 473–480 (2002).

    Article  CAS  Google Scholar 

  19. Jones, M. J. et al. A South Pole–Aitken impact origin of the lunar compositional asymmetry. Sci. Adv. 8, eabm8475 (2022).

    Article  CAS  Google Scholar 

  20. Zhang, N. et al. Lunar compositional asymmetry explained by mantle overturn following the South Pole–Aitken impact. Nat. Geosci. 15, 37–41 (2022).

    Article  CAS  Google Scholar 

  21. Zuber, M. T. et al. Gravity field of the moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission. Science 339, 668–671 (2013).

    Article  CAS  Google Scholar 

  22. Andrews-Hanna, J. C. et al. Structure and evolution of the lunar Procellarum region as revealed by GRAIL gravity data. Nature 514, 68–71 (2014).

    Article  CAS  Google Scholar 

  23. Liang, W. & Andrews-Hanna, J. C. Probing the source of ancient linear gravity anomalies on the Moon. Icarus 380, 114978 (2022).

    Article  Google Scholar 

  24. Li, H. et al. Lunar cumulate mantle overturn: a model constrained by ilmenite rheology. J. Geophys. Res. Planets 124, 1357–1378 (2019).

    Article  CAS  Google Scholar 

  25. Andrews-Hanna, J. C. et al. Ancient igneous intrusions and early expansion of the moon revealed by GRAIL gravity gradiometry. Science 339, 675–678 (2013).

    Article  CAS  Google Scholar 

  26. Liang, W. Gravity_anomaly_mcmc: 1.0. Zenodo https://doi.org/10.5281/zenodo.10622788 (2024).

  27. Wieczorek, M. A. et al. The crust of the Moon as seen by GRAIL. Science 339, 671–675 (2013).

    Article  CAS  Google Scholar 

  28. Broquet, A. Displacement_strain_planet: 0.5. Zenodo https://doi.org/10.5281/zenodo.10552129 (2024).

  29. Broquet, A. & Andrews-Hanna, J. C. Geophysical evidence for an active mantle plume underneath Elysium Planitia on Mars. Nat. Astron. 7, 160–169 (2023).

    Google Scholar 

  30. Broquet, A. & Andrews-Hanna, J. C. The Moon before mare. Icarus 428, 115846 (2024).

    Article  Google Scholar 

  31. Williams, N. R. et al. Evidence for recent and ancient faulting at Mare Frigoris and implications for lunar tectonic evolution. Icarus 326, 151–161 (2019).

    Article  Google Scholar 

  32. Freed, A. M. et al. The formation of lunar mascon basins from impact to contemporary form. J. Geophys. Res. Planets 119, 2378–2397 (2014).

    Article  Google Scholar 

  33. Orgel, C. et al. Ancient bombardment of the inner solar system: reinvestigation of the ‘fingerprints’ of different impactor populations on the lunar surface. J. Geophys. Res. Planets 123, 748–762 (2018).

    Article  CAS  Google Scholar 

  34. Huang, Y. H., Soderblom, J. M., Minton, D. A., Hirabayashi, M. & Melosh, H. J. Bombardment history of the Moon constrained by crustal porosity. Nat. Geosci. 15, 531–535 (2022).

    Article  CAS  Google Scholar 

  35. Garrick-Bethell, I. et al. Troctolite 76535: a sample of the Moon’s South Pole–Aitken basin? Icarus 338, 113430 (2020).

    Article  CAS  Google Scholar 

  36. Melosh, H. J. Planetary Surface Processes (Cambridge Univ. Press, 2011).

  37. Miljković, K. et al. Subsurface morphology and scaling of lunar impact basins. J. Geophys. Res. Planets 121, 1695–1712 (2016).

    Article  Google Scholar 

  38. Zhao, Y., de Vries, J., van den Berg, A. P., Jacobs, M. H. G. & van Westrenen, W. The participation of ilmenite-bearing cumulates in lunar mantle overturn. Earth Planet. Sci. Lett. 511, 1–11 (2019).

    Article  Google Scholar 

  39. Zhang, N., Dygert, N., Liang, Y. & Parmentier, E. M. The effect of ilmenite viscosity on the dynamics and evolution of an overturned lunar cumulate mantle. Geophys. Res. Lett. 44, 6543–6552 (2017).

    Article  CAS  Google Scholar 

  40. Wieczorek, M. A. Gravity and Topography of the Terrestrial Planets. in Treatise on Geophysics 10, 153–193 (Elsevier, 2015).

  41. Elbeshausen, D., Wünnemann, K. & Collins, G. S. The transition from circular to elliptical impact craters. J. Geophys. Res. Planets 118, 2295–2309 (2013).

    Article  Google Scholar 

  42. Zhong, S., McNamara, A., Tan, E., Moresi, L. & Gurnis, M. A benchmark study on mantle convection in a 3-D spherical shell using CitcomS. Geochem. Geophys. Geosyst. 9, Q10017 (2008).

    Article  Google Scholar 

  43. Wieczorek, M. A. & Phillips, R. J. Potential anomalies on a sphere: applications to the thickness of the lunar crust. J. Geophys. Res. Planets 103, 1715–1724 (1998).

    Article  Google Scholar 

  44. Wieczorek, M. A. & Meschede, M. SHTools: tools for working with spherical harmonics. Geochem. Geophys. Geosyst. 19, 2574–2592 (2018).

    Article  Google Scholar 

  45. Lemoine, F. G. et al. GRGM900C: a degree 900 lunar gravity model from GRAIL primary and extended mission data. Geophys. Res. Lett. 41, 3382–3389 (2014).

    Article  Google Scholar 

  46. Smith, D. E. et al. Initial observations from the Lunar Orbiter Laser Altimeter (LOLA). Geophys. Res. Lett. 37, L18204 (2010).

    Article  Google Scholar 

  47. Kiefer, W. S., Macke, R. J., Britt, D. T., Irving, A. J. & Consolmagno, G. J. The density and porosity of lunar rocks. Geophys. Res. Lett. 39, L07201 (2012).

    Article  Google Scholar 

  48. Andrews-Hanna, J. C. et al. Ring faults and ring dikes around the Orientale basin on the Moon. Icarus 310, 1–20 (2018).

    Article  Google Scholar 

  49. Nagy, D. The gravitational attraction of a right rectangular prism. Geophysics 31, 362–371 (1966).

    Article  Google Scholar 

  50. Chib, S. & Greenberg, E. Understanding the metropolis-hastings algorithm. Am. Stat. 49, 327–335 (1995).

    Article  Google Scholar 

  51. Jansen, J. C. et al. Small-scale density variations in the lunar crust revealed by GRAIL. Icarus 291, 107–123 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grant 80NSSC22K1340 from the NASA Lunar Data Analysis Program to J.C.A.-H.

Author information

Authors and Affiliations

Authors

Contributions

W.L., A.B. and J.C.A.-H. conceptualized the work and methodology and wrote the manuscript. W.L. carried out the gravity analyses and Monte Carlo modelling. A.B. performed the gravity–topography inversions. N.Z. conducted the geodynamic modelling of mantle overturn. M.D. and A.J.E. contributed to editing of the manuscript and discussion of the work.

Corresponding author

Correspondence to Adrien Broquet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Felipe Leitzke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Hunt, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Bouguer gravity gradients over the nearside mare region.

(a) Bouguer gravity gradient map computed using a low-pass filter at spherical harmonic degree 100 to isolate longer wavelength anomalies consistent with arising at the base of the crust. (b) Interpreted Bouguer gravity gradients map, with the border anomalies related to sub-crustal IBC (black) and anomalies internal to the PKT that are potentially related to sub-crustal IBC (grey). Major impact basins are shaded orange and labelled, including Imbrium (Im.), Serenitatis (Ser.), Humorum (Hum.), and Asperitatis (Asp.).

Extended Data Fig. 2 Predicted IBC thickness from the geodynamic model of mantle overturn.

The models shown assume a density contrast of 200 kg/m3 and viscosity ratios of 10−3 (a), 10−2 (b), and 10−1 (c), and density contrasts of 300 kg/m3 (d) and 400 kg/m3 (e) for a viscosity ratio of 10−2.

Extended Data Fig. 3 Forward modelled Bouguer gravity gradient anomalies associated with IBCs as derived from mantle overturn models.

The models shown assume density contrasts both during overturn and in the final state of (a) 300 and (b) 400 kg/m3, each assuming a viscosity ratio 10−2 between the IBCs and mantle.

Extended Data Fig. 4 Additional results from the gravity and topography inversion for the ilmenite-bearing cumulate (IBC) layer thickness.

Shown are the initial and post-interpolation mare (a,b) and crustal (c,d) thicknesses as calculated during the first and second steps of the gravity and topography inversion for IBC thickness.

Extended Data Fig. 5 Nearside Bouguer anomaly contour map (a) and zoom-in panels of the (b) Humorum and (c) Serenitatis–Asperitatis regions.

Our mapped paths of the PKT border anomalies are shown as white lines, with the projected paths where erased by impact basins shown as transparent white dashed lines. The black boxes in (a) indicate the location of (b) and (c). These maps are generated using a high-pass filter at spherical harmonic degree 8, a low-pass filter at degree 150, and a Bouguer correction density of 3100 kg/m3. Both gravity gradient and Bouguer contour maps were used in mapping anomalies, with the latter being particularly useful for showing the lack of features on the basin floors.

Extended Data Table 1 Compilation of results from all Markov chain Monte Carlo model runs

Supplementary information

Supplementary Information

Supplementary Figs. 1–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, W., Broquet, A., Andrews-Hanna, J.C. et al. Vestiges of a lunar ilmenite layer following mantle overturn revealed by gravity data. Nat. Geosci. 17, 361–366 (2024). https://doi.org/10.1038/s41561-024-01408-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-024-01408-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing