Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Behavioural factors that drive stacking with traditional cooking fuels using the COM-B model

Abstract

Globally, 2.8 billion people cook with biomass fuels, resulting in devastating health and environmental consequences. Efforts to transition households to cooking with clean fuels are hampered by ‘fuel stacking’, the reliance on multiple fuels and stoves. Consequently, there have been few interventions that have realized the full potential of clean cooking. Here we conduct a structured literature review (N = 100) to identify drivers of fuel stacking and specify them according to a psychological model of behaviour, the Capability–Opportunity–Motivation (COM-B) model. We create a taxonomy of stacking and find that the Physical Opportunity domain accounted for 82% of drivers. Our results have important implications for intervention design as they suggest improving opportunity is the most effective pathway to adoption of cleaner fuels. The findings are used to derive recommendations about how policymakers and practitioners can proactively address drivers of stacking to foster adoption of clean cooking stoves and fuels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of papers identified in the literature review.
Fig. 2: Radial graphs showing stacking drivers for each technology.
Fig. 3: Proportion of stacking drivers by COM-B component.
Fig. 4: Breakdown of contributions by COM-B components.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available in the Supplementary Information and Supplementary Data files.

References

  1. Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations, 2015).

  2. Tracking SDG 7: The Energy Progress Report (IEA, IRENA, UNSD, World Bank & WHO, 2020).

  3. Household Air Pollution and Health (WHO, 2018); https://www.who.int/en/news-room/fact-sheets/detail/household-air-pollution-and-health

  4. The State of the World’s Forests (FAO, 2018); http://www.fao.org/state-of-forests/en/

  5. Masera, O. R., Bailis, R., Drigo, R., Ghilardi, A. & Ruiz-Mercado, I. Environmental burden of traditional bioenergy use. Annu. Rev. Environ. Resour. 40, 121–150 (2015).

    Article  Google Scholar 

  6. Ramanathan, V. & Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 1, 221–227 (2008).

    Article  Google Scholar 

  7. Kar, A. & Zerriffi, H. From cookstove acquisition to cooking transition: framing the behavioural aspects of cookstove interventions. Energy Res. Social Sci. 42, 23–33 (2018).

    Article  Google Scholar 

  8. The State of Access to Modern Energy Cooking Services (ESMAP, 2020).

  9. Comparative Analysis of Fuels for Cooking (Global Alliance for Clean Cookstoves, 2016).

  10. Puzzolo, E. et al. Supply considerations for scaling up clean cooking fuels for household energy in low- and middle-income countries. GeoHealth 3, 370–390 (2019).

    Article  Google Scholar 

  11. Quinn, A. K. et al. An analysis of efforts to scale up clean household energy for cooking around the world. Energy Sustain. Dev. 46, 1–10 (2018).

    Article  Google Scholar 

  12. Ruiz-Mercado, I., Masera, O., Zamora, H. & Smith, K. R. Adoption and sustained use of improved cookstoves. Energy Policy 39, 7557–7566 (2011).

    Article  Google Scholar 

  13. Shankar, A. V. et al. Everybody stacks: lessons from household energy case studies to inform design principles for clean energy transitions. Energy Policy 141, 111468 (2020).

    Article  Google Scholar 

  14. Johnson, M. Quantitative guidance for stove usage and performance to achieve health and environmental targets. Environ. Health Perspect. 123, 820–826 (2015).

    Article  Google Scholar 

  15. Kities, R., Mulder, P. & Rietveld, P. Energy poverty reduction by fuel switching. Impact evaluation of the LPG conversion program in Indonesia. Energy Policy 66, 436–449 (2014).

    Article  Google Scholar 

  16. Williams, K. N. et al. Exploring the impact of a liquefied petroleum gas intervention on time use in rural Peru: a mixed methods study on perceptions, use, and implications of time savings. Environ. Int. 145, 105932 (2020).

    Article  Google Scholar 

  17. Puzzolo, E., Pope, D., Stanistreet, D., Rehfuess, E. A. & Bruce, N. G. Clean fuels for resource-poor settings: a systematic review of barriers and enablers to adoption and sustained use. Environ. Res. 146, 218–234 (2016).

    Article  Google Scholar 

  18. Vigolo, V., Sallaku, R. & Testa, . Drivers and barriers to clean cooking: a systematic literature review from a consumer behavior perspective. Sustainability 10, 4322 (2018).

    Article  Google Scholar 

  19. Barnes, B. R. Behavioural change, indoor air pollution and child respiratory health in developing countries: a review. Int. J. Environ. Res. Public Health 11, 4607–4618 (2014).

    Article  Google Scholar 

  20. Furszyfer Del Rio, D. D. et al. Do we need better behaved cooks? Reviewing behavioural change strategies for improving the sustainability and effectiveness of cookstove programs. Energy Res. Social Sci. 70, 101788 (2020).

    Article  Google Scholar 

  21. Goodwin, N. J. et al. Use of behavior change techniques in clean cooking interventions: a review of the evidence and scorecard of effectiveness. J. Health Commun. 20, 43–54 (2015).

    Article  Google Scholar 

  22. Smith, K. R. & Sagar, A. Making the clean available: escaping India’s Chulha Trap. Energy Policy 75, 410–414 (2014).

    Article  Google Scholar 

  23. Clements, W. et al. Unlocking electric cooking on Nepali micro-hydropower mini-grids. Energy Sustain. Dev. 57, 119–131 (2020).

    Article  Google Scholar 

  24. AMPERES, Switch Batteries, REAM, DfiD & Loughborough Univ. E-waste to E-cook: Piloting a Scalable, Modular Power-Pack Using Upcycled Lithium-Ion Technology for Affordable and Reliable E-cooking in Myanmar (MECS-TRIID, 2020).

  25. Ruiz-Mercado, I., Canuz, E., Walker, J. L. & Smith, K. R. Quantitative metrics of stove adoption using Stove Use Monitors (SUMs). Biomass Bioenergy 57, 136–148 (2013).

    Article  Google Scholar 

  26. Jewitt, S., Atagher, P. & Clifford, M. ‘We cannot stop cooking’: stove stacking, seasonality and the risky practices of household cookstove transitions in Nigeria. Energy Res. Social Sci. 61, 101340 (2020).

    Article  Google Scholar 

  27. Gould, C. F. & Urpelainen, J. LPG as a clean cooking fuel: adoption, use, and impact in rural India. Energy Policy 122, 395–408 (2018).

    Article  Google Scholar 

  28. Williams, K. N. et al. Beyond cost: exploring fuel choices and the socio-cultural dynamics of liquefied petroleum gas stove adoption in Peru. Energy Res. Social Sci. 66, 101591 (2020).

    Article  Google Scholar 

  29. Nuño Martínez, N., Mäusezahl, D. & Hartinger, S. M. A cultural perspective on cooking patterns, energy transfer programmes and determinants of liquefied petroleum gas use in the Andean Peru. Energy Sustain. Dev. 57, 160–167 (2020).

    Article  Google Scholar 

  30. Pollard, S. L. et al. An evaluation of the Fondo de Inclusión Social Energético program to promote access to liquefied petroleum gas in Peru. Energy Sustain. Dev. 46, 82–93 (2018).

    Article  Google Scholar 

  31. Raynes-Greenow, C. et al. A feasibility study assessing acceptability and supply issues of distributing LPG cookstoves and gas cylinders to pregnant women living in rural Bangladesh for poriborton: the CHANge trial. Int. J. Environ. Res. Public Health 17, 848 (2020).

    Article  Google Scholar 

  32. Wang, Y. & Bailis, R. The revolution from the kitchen: social processes of the removal of traditional cookstoves in Himachal Pradesh, India. Energy Sustain. Dev. 27, 127–136 (2015).

    Article  Google Scholar 

  33. Pye, A. et al. Drivers of the adoption and exclusive use of clean fuel for cooking in sub-Saharan Africa: learnings and policy considerations from Cameroon. Int. J. Environ. Res. Public Health 17, 5874 (2020).

    Article  Google Scholar 

  34. Ronzi, S. et al. Using photovoice methods as a community-based participatory research tool to advance uptake of clean cooking and improve health: the LPG adoption in Cameroon evaluation studies. Social Sci. Med. 228, 30–40 (2019).

    Article  Google Scholar 

  35. Abdulai, M. A. et al. Experiences with the mass distribution of LPG stoves in rural communities of Ghana. EcoHealth 15, 757–767 (2018).

    Article  Google Scholar 

  36. Agbokey, F. et al. Determining the enablers and barriers for the adoption of clean cookstoves in the middle belt of Ghana—a qualitative study. Int. J. Environ. Res. Public Health 16, 1207 (2019).

    Article  Google Scholar 

  37. Asante, K. P. et al. Ghana’s rural liquefied petroleum gas program scale up: a case study. Energy Sustain. Dev. 46, 94–102 (2018).

    Article  Google Scholar 

  38. ClimDev, DfiD & Loughborough Univ. Enhancing LPG Access for Semi-Urban Populations in Nigeria (MECS-TRIID, 2020).

  39. Banerjee, M., Prasad, R., Rehman, I. H. & Gill, B. Induction stoves as an option for clean cooking in rural India. Energy Policy 88, 159–167 (2016).

    Article  Google Scholar 

  40. Thompson, L. M., Hengstermann, M., Weinstein, J. R. & Diaz-Artiga, A. Adoption of liquefied petroleum gas stoves in Guatemala: a mixed-methods study. EcoHealth 15, 745–756 (2018).

    Article  Google Scholar 

  41. Keese, J., Camacho, A. & Chavez, A. Follow-up study of improved cookstoves in the Cuzco region of Peru. Dev. Pract. 27, 26–36 (2017).

    Article  Google Scholar 

  42. EarthSpark International On- and Off- (Micro) Grid PV Electric Cooking: Field Data for Integrated Energy Access in Haiti (MECS, 2020).

  43. Pailman, W., de Groot, J., Clifford, M., Jewitt, S. & Ray, C. Experiences with improved cookstoves in Southern Africa. J. Energy South. Afr. 29, 13–26 (2018).

    Article  Google Scholar 

  44. Leary, J. et al. eCook Tanzania Focus Group Discussions Summary Report (MECS, 2019).

  45. Troncoso, K., Segurado, P., Aguilar, M. & Soares da Silva, A. Adoption of LPG for cooking in two rural communities of Chiapas, Mexico. Energy Policy 133, 110925 (2019).

    Article  Google Scholar 

  46. Coley, W. & Galloway, S. Market Assessment for Modern Energy Cooking Services in Malawi (MECS, 2020).

  47. Jagadish, A. & Dwivedi, P. In the hearth, on the mind: cultural consensus on fuelwood and cookstoves in the middle Himalayas of India. Energy Res. Social Sci. 37, 44–51 (2018).

    Article  Google Scholar 

  48. Mguni, P. et al. What could go wrong with cooking? Exploring vulnerability at the water, energy and food nexus in Kampala through a social practices lens. Glob. Environ. Change 63, 102086 (2020).

    Article  Google Scholar 

  49. Nathan, D. et al. The value of rural women’s labour in production and wood fuel use: a framework for analysis. Econ. Polit. Wkly 53, 56–63 (2018).

    Google Scholar 

  50. Leary, J., Scott, N., Serenje, N., Mwila, F. & Batchelor, S. eCook Zambia Cooking Diaries (MECS, 2019).

  51. Hollada, J. et al. Perceptions of improved biomass and liquefied petroleum gas stoves in Puno, Peru: implications for promoting sustained and exclusive adoption of clean cooking technologies. Int. J. Environ. Res. Public Health 14, 182 (2017).

    Article  Google Scholar 

  52. Chirwa, P. W., Ham, C., Maphiri, S. & Balmer, M. Bioenergy use and food preparation practices of two communities in the Eastern Cape Province of South Africa. J. Energy South. Afr. 21, 26–31 (2010).

    Article  Google Scholar 

  53. Leary, J., Serenje, N., Mwila. F & Batchelor, S. eCook Zambia Focus Group Discussions Summary Report (MECS, 2019).

  54. Serenje, N. & Price, M. Zambia Cooking Diaries 2.0 Follow Up Survey (MECS, 2020).

  55. Dickinson, K. L. et al. Adoption of improved biomass stoves and stove/fuel stacking in the REACCTING intervention study in Northern Ghana. Energy Policy 130, 361–374 (2019).

    Article  Google Scholar 

  56. Nguyen, T. T. P. T. & McLennan, S. Lali’an versus improved cook stoves: how change happens in urban households in Timor-Leste. Ann. Anthropol. Pract. 43, 72–85 (2019).

    Article  Google Scholar 

  57. Rosenbaum, J., Derby, E. & Dutta, K. Understanding consumer preference and willingness to pay for improved cookstoves in Bangladesh. J. Health Commun. 20, 20–27 (2015).

    Article  Google Scholar 

  58. Lam, N. L. et al. Seasonal fuel consumption, stoves, and end-uses in rural households of the far-western development region of Nepal. Environ. Res. Lett. 12, 125011 (2017).

    Article  Google Scholar 

  59. Bielecki, C. & Wingenbach, G. Rethinking improved cookstove diffusion programs: a case study of social perceptions and cooking choices in rural Guatemala. Energy Policy 66, 350–358 (2014).

    Article  Google Scholar 

  60. Onyeneke, R. U. et al. Improved cook-stoves and environmental and health outcomes: lessons from cross river state, Nigeria. Int. J. Environ. Res. Public Health 16, 3520 (2019).

    Article  Google Scholar 

  61. Ochieng, C. A., Zhang, Y., Nyabwa, J. K., Otieno, D. I. & Spillane, C. Household perspectives on cookstove and fuel stacking: a qualitative study in urban and rural Kenya. Energy Sustain. Dev. 59, 151–159 (2020).

    Article  Google Scholar 

  62. Bauer, G. Evaluation of usage and fuel savings of solar ovens in Nicaragua. Energy Policy 97, 250–257 (2016).

    Article  Google Scholar 

  63. Malakar, Y., Greig, C. & van de Fliert, E. Resistance in rejecting solid fuels: beyond availability and adoption in the structural dominations of cooking practices in rural India. Energy Res. Social Sci. 46, 225–235 (2018).

    Article  Google Scholar 

  64. Rohingya Refugee Response in Bangladesh: Factsheet - Energy & Environment, August (UNHCR, 2020).

  65. Perros, T., Büttner, P., Leary, J. & Parikh, P. Pay-as-you-go LPG: a mixed-methods pilot study in urban Rwanda. Energy Sustain. Dev. 65, 117–129 (2021).

    Article  Google Scholar 

  66. Shupler, M. et al. Pay-as-you-go LPG supports sustainable clean cooking in Kenyan informal urban settlement, including during a period of COVID-19 lockdown. Appl. Energy 292, 116769 (2021).

    Article  Google Scholar 

  67. Pillarisetti, A. et al. Promoting LPG usage during pregnancy: a pilot study in rural Maharashtra, India. Environ. Int. 127, 540–549 (2019).

    Article  Google Scholar 

  68. Household Air Pollution Intervention Network (HAPIN) Trial: Exposure Contrasts and Adherence to the LPG Stove and Fuel Intervention During Pregnancy (ASHES, 2021).

  69. Williams, K. N. et al. Designing a comprehensive behaviour change intervention to promote and monitor exclusive use of liquefied petroleum gas stoves for the Household Air Pollution Intervention Network (HAPIN) trial. BMJ Open 10, e037761 (2020).

    Article  Google Scholar 

  70. What Drives the Transition to Modern Energy Cooking Services? A Systematic Review of the Evidence (ESMAP, 2021).

  71. Michie, S., Van Stralen, M. & West, R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implementation Sci. 6, 42 (2011).

  72. Pandemic Fatigue: Reinvigorating the Public to Prevent COVID-19 (WHO, 2020).

  73. Handley, M. A. et al. Applying the COM-B model to creation of an IT-enabled health coaching and resource linkage program for low-income Latina moms with recent gestational diabetes: the STAR MAMA program. Implementation Sci. 11, 73 (2016).

    Article  Google Scholar 

  74. Jackson, C., Eliasson, L., Barber, N. & Weinman, J. Applying COM-B to medication adherence. Bull. Eur. Health Psychol. Soc. 16, 7–17 (2014).

    Google Scholar 

  75. Barker, F., Atkins, L. & de Lusignan, S. Applying the COM-B behaviour model and behaviour change wheel to develop an intervention to improve hearing-aid use in adult auditory rehabilitation. Int. J. Audiol. 55, S90–S98 (2016).

    Article  Google Scholar 

  76. Thompson, L. M., Diaz-Artiga, A., Weinstein, J. R. & Handley, M. A. Designing a behavioral intervention using the COM-B model and the theoretical domains framework to promote gas stove use in rural Guatemala: a formative research study. BMC Public Health 18, 253 (2018).

    Article  Google Scholar 

  77. Davidoff, F., Dixon-Woods, M., Leviton, L. & Michie, S. Demystifying theory and its use in improvement. BMJ Qual. Saf. 24, 228–238 (2015).

    Article  Google Scholar 

  78. Allison, A. L., Lorencatto, F., Miodownik, M. & Michie, S. Influences on single-use and reusable cup use: a multidisciplinary mixed-methods approach to designing interventions reducing plastic waste. UCL Open Environ. 3, 4 (2021).

    Article  Google Scholar 

  79. Scopus (Elsevier, accessed 12 February 2022); https://www.elsevier.com/en-gb/solutions/scopus

  80. Pandit, S., Gautam, B., Clements, W., Williamson, S. & Silwal, K. Assessing Electric Cooking Potential in Micro Hydropower Microgrids in Nepal (MECS, 2020).

  81. Braun, V. & Clarke, V. Using thematic analysis in psychology. Qual. Res. Psychol. 3, 77–101 (2006).

    Article  Google Scholar 

  82. Boyatzis, R. E. Transforming Qualitative Information: Thematic Analysis and Code Development (SAGE Publications Ltd, 1998).

  83. Tobin, G. A. & Begley, C. M. Methodological rigour within a qualitative framework. J. Adv. Nurs. 48, 388–396 (2004).

    Article  Google Scholar 

  84. Fereday, J. & Muir-Cochrane, E. Demonstrating rigor using thematic analysis: a hybrid approach of inductive and deductive coding and theme development. Int. J. Qual. Methods 5, 80–92 (2006).

    Article  Google Scholar 

  85. Cane, J., O’Connor, D. & Michie, S. Validation of the theoretical domains framework for use in behaviour change and implementation research. Implementation Sci. 7, 37 (2012).

    Article  Google Scholar 

  86. Allison, A. L., Lorencatto, F., Michie, S. & Miodownik, M. Barriers and enablers to buying biodegradable and compostable plastic packaging. Sustainability 13, 1463 (2021).

    Article  Google Scholar 

  87. Timlin, D., McCormack, J. M. & Simpson, E. E. A. Using the COM-B model to identify barriers and facilitators towards adoption of a diet associated with cognitive function (MIND diet). Public Health Nutr. 24, 1657–1670 (2021).

    Article  Google Scholar 

  88. Zhu, X. et al. Stacked use and transition trends of rural household energy in mainland China. Environ. Sci. Technol. 53, 521–529 (2019).

    Article  Google Scholar 

  89. Christiaensen, L. & Heltberg, R. Greening China’s rural energy: new insights on the potential of smallholder biogas. Environ. Dev. Econ. 19, 8–29 (2014).

    Article  Google Scholar 

  90. Leary, J. et al. eCook Myanmar Focus Group Discussions (MECS, 2019).

  91. Leary, J. et al. eCook Myanmar Cooking Diaries (MECS, 2019).

  92. Nansaior, A., Patanothai, A., Rambo, A. T. & Simaraks, S. Climbing the energy ladder or diversifying energy sources? The continuing importance of household use of biomass energy in urbanizing communities in Northeast Thailand. Biomass Bioenergy 35, 4180–4188 (2011).

    Article  Google Scholar 

  93. International Development Enterprises, DFID & Loughborough Univ. Exploring Futures of Alternative Cooking in Cambodia (MECS-TRIID, 2020).

  94. Clark, S. et al. Adoption and use of a semi-gasifier cooking and water heating stove and fuel intervention in the Tibetan Plateau, China. Environ. Res. Lett. 12, 075004 (2017).

    Article  Google Scholar 

  95. Gould, C. F. et al. Prevalent degradation and patterns of use, maintenance, repair, and access to post-acquisition services for biomass stoves in Peru. Energy Sustain. Dev. 45, 79–87 (2018).

    Article  Google Scholar 

  96. Pine, K. et al. Adoption and use of improved biomass stoves in rural Mexico. Energy Sustain. Dev. 15, 176–183 (2011).

    Article  Google Scholar 

  97. Ruiz-Mercado, I. & Masera, O. Patterns of stove use in the context of fuel–device stacking: rationale and implications. EcoHealth 12, 42–56 (2015).

    Article  Google Scholar 

  98. Williams, K. N. et al. Use of liquefied petroleum gas in Puno, Peru: fuel needs under conditions of free fuel and near-exclusive use. Energy Sustain. Dev. 58, 150–157 (2020).

    Article  Google Scholar 

  99. Labriet M. & Alfaro, O. Scaling Up Demand for LPG in Guatemala: Motivators, Barriers and Opportunities (Clean Cooking Alliance, 2015).

  100. Rapid Assessment of User Perceptions of Carbonized Agricultural Waste Briquette Fuels: Haiti 2016 (Berkeley Air Monitoring Group, 2016).

  101. Chalise, N., Kumar, P., Priyadarshini, P. & Yadama, G. N. Dynamics of sustained use and abandonment of clean cooking systems: lessons from rural India. Environ. Res. Lett. 13, 035010 (2018).

    Article  Google Scholar 

  102. Shankar, A. et al. Maximizing the benefits of improved cookstoves: moving from acquisition to correct and consistent use. Glob. Health Sci. Pract. 2, 268–274 (2014).

    Article  Google Scholar 

  103. Herington, M. J., Lant, P. A., Smart, S., Greig, C. & van de Fliert, E. Defection, recruitment and social change in cooking practices: energy poverty through a social practice lens. Energy Res. Social Sci. 34, 272–280 (2017).

    Article  Google Scholar 

  104. Wilson, D. L., Monga, M., Saksena, A., Kumar, A. & Gadgil, A. Effects of USB port access on advanced cookstove adoption. Dev. Eng. 3, 209–217 (2018).

    Article  Google Scholar 

  105. Singh, S. The Kaleidoscope of Cooking: Understanding Cooking Behaviour and Stove Preferences in Rural India (Deutsche Gesellschaft für International, 2014).

  106. What do cooks want? What will they pay? A study of improved cookstoves. WASHplus (March 2014).

  107. Billah, S. M. et al. Self-adopted ‘natural users’ of liquid petroleum gas for household cooking by pregnant women in rural Bangladesh: characteristics of high use and opportunities for intervention. Environ. Res. Lett. 15, 095008 (2020).

    Article  Google Scholar 

  108. Lambe, F. & Atteridge, A. Putting the Cook Before the Stove (Stockholm Environment Institute, 2012).

  109. Thurber, M. C., Phadke, H., Nagavarapu, S., Shrimali, G. & Zerriffi, H. ‘Oorja’ in India: assessing a large-scale commercial distribution of advanced biomass stoves to households. Energy Sustain. Dev. 19, 138–150 (2014).

    Article  Google Scholar 

  110. Lwiza, F., Mugisha, J., Walekhwa, P. N., Smith, J. & Balana, B. Dis-adoption of household biogas technologies in Central Uganda. Energy Sustain. Dev. 37, 124–132 (2017).

    Article  Google Scholar 

  111. Nape, K. M. et al. Introduction of household biogas digesters in rural farming households of the Maluti-a-Phofung municipality, South Africa. J. Energy South. Afr. 30, 28–37 (2019).

    Article  Google Scholar 

  112. Behre, M., Hoag, D., Tesfay, G. & Keske, C. Factors influencing the adoption of biogas digesters in rural Ethiopia. Energy Sustain. Soc. 7, 10 (2017).

    Article  Google Scholar 

  113. CREATIVenergie, DfID, and Loughborough University, Portable biogas: assessing the socio-economic viability of packaging and distributing ready to use bioGAS, MECS-TRIID Rep., 2020.

  114. Pesitho, DfiD & Loughborough Univ. Cleaning the Air Through Cooking: Providing Alternative Energy Solutions for Cooking Practices in the Bidibidi Refugee Settlement in Yumbe District in Uganda (MECS-TRIID, 2020).

  115. Kachione, L., DfiD & Loughborough Univ. Customizing Malawi-made Solar Electric Cooking Technology and Business Models to Provide Access to Very Low Income Villagers (MECS-TRIID, 2020).

  116. PowerGen Renewable Energy Ltd, DfiD & Loughborough Univ. Accelerating Uptake of Electric Cooking on AC Microgrids Through Business and Delivery Model iInovations (MECS-TRIID, 2020).

  117. Leary, J. et al. eCook Tanzania Cooking Diaries (MECS, 2019).

  118. Leary, J. et al. eCook Kenya Cooking Diaries (MECS, 2019).

  119. Mudombi, S. et al. User perceptions about the adoption and use of ethanol fuel and cookstoves in Maputo, Mozambique. Energy Sustain. Dev. 44, 97–108 (2018).

    Article  Google Scholar 

  120. Benka-Coker, M. L., Tadele, W., Milano, A., Getaneh, D. & Stokes, H. A case study of the ethanol CleanCook stove intervention and potential scale-up in Ethiopia. Energy Sustain. Dev. 46, 53–64 (2018).

    Article  Google Scholar 

  121. Gitau, K. J., Mutune, J., Sundberg, C., Mendum, R. & Njenga, M. Factors influencing the adoption of biochar-producing gasifier cookstoves by households in rural Kenya. Energy Sustain. Dev. 52, 63–71 (2019).

    Article  Google Scholar 

  122. Akintan, O., Jewitt, S. & Clifford, M. Culture, tradition, and taboo: understanding the social shaping of fuel choices and cooking practices in Nigeria. Energy Res. Social Sci. 40, 14–22 (2018).

    Article  Google Scholar 

  123. Namagembe, A. et al. Factors influencing the acquisition and correct and consistent use of the top-lit updraft cookstove in Uganda. J. Health Commun. 20, 76–83 (2015).

    Article  Google Scholar 

  124. Person, B. et al. ‘It is good for my family’s health and cooks food in a way that my heart loves’: qualitative findings and implications for scaling up an improved cookstove project in rural Kenya. Int. J. Environ. Res. Public Health 9, 1566–1580 (2012).

    Article  Google Scholar 

  125. Burwen, J. & Levine, D. I. A rapid assessment randomized-controlled trial of improved cookstoves in rural Ghana. Energy Sustain. Dev. 16, 328–338 (2012).

    Article  Google Scholar 

  126. Dresen, E., DeVries, B., Herold, M., Verchot, L. & Müller, R. Fuelwood savings and carbon emission reductions by the use of improved cooking stoves in an Afromontane forest, Ethiopia. Land 3, 1137–1157 (2014).

    Article  Google Scholar 

  127. Jagger, P. & Jumbe, C. Stoves or sugar? Willingness to adopt improved cookstoves in Malawi. Physiol. Behav. 176, 139–148 (2017).

    Google Scholar 

  128. Lozier, M. J. et al. Use of temperature sensors to determine exclusivity of improved stove use and associated household air pollution eductions in Kenya. Environ. Sci. Technol. 50, 4564–4571 (2016).

    Article  Google Scholar 

  129. Martin, S. L. et al. Using formative research to design a behavior change strategy to increase the use of improved cookstoves in Peri-urban Kampala, Uganda. Int. J. Environ. Res. Public Health 10, 6920–6938 (2013).

    Article  Google Scholar 

  130. O’Shaughnessy, S. M., Deasy, M. J., Doyle, J. V. & Robinson, A. J. Adaptive design of a prototype electricity-producing biomass cooking stove. Energy Sustain. Dev. 28, 41–51 (2015).

    Article  Google Scholar 

  131. Piedrahita, R. et al. Assessment of cookstove stacking in Northern Ghana using surveys and stove use monitors. Energy Sustain. Dev. 34, 67–76 (2016).

    Article  Google Scholar 

  132. Baseline Communication Strategy Study on Improved Cooking Stoves (GIZ and EnDev, 2012).

  133. Mekonnen, A. et al. Improved Biomass Cookstove Use in the Longer Run: Results from a Field Experiment in Rural Ethiopia (World Bank, 2020).

  134. Samad, H. & Portale, E. Have Improved Cookstoves Beneffitted Rural Kenyans? Findings from the EnDev Initiative (World Bank, 2019).

  135. Beyene, A. et al. The Improved Biomass Stove Saves Wood, But How Often Do People Use it? Evidence from a Randomized Treatment Trial in Ethiopia (World Bank, 2015).

  136. Treiber, M. U., Grimsby, L. K. & Aune, J. B. Reducing energy poverty through increasing choice of fuels and stoves in Kenya: complementing the multiple fuel model. Energy Sustain. Dev. 27, 54–62 (2015).

    Article  Google Scholar 

  137. Iribagiza, C., Sharpe, T., Wilson, D. & Thomas, E. A. User-centered design of an air quality feedback technology to promote adoption of clean cookstoves. J. Expo. Sci. Environ. Epidemiol. 30, 925–936 (2020).

    Article  Google Scholar 

  138. Wiedinmyer, C. et al. Rural–urban differences in cooking practices and exposures in Northern Ghana. Environ. Res. Lett. 12, 065009 (2017).

    Article  Google Scholar 

  139. SCODE, DfiD & Loug Developing and Testing Innovative User-friendly LPG Financing Models to Accelerate Uptake Among Rural Poor Through Mobile Pay (MECS-TRIID, 2020).

  140. Kenya Consumer Segmentation Study (Ipsos Ltd., 2014).

  141. Ghana Consumer Segmentation Study (Global Alliance for Clean Cookstoves, 2014).

  142. Bailis, R. et al. Enhancing clean cooking options in peri-urban Kenya: a pilot study of advanced gasifier stove adoption. Environ. Res. Lett. 15, 084017 (2020).

    Article  Google Scholar 

  143. Lambe, F. et al. Opening the black pot: a service design-driven approach to understanding the use of cleaner cookstoves in peri-urban Kenya. Energy Res. Social Sci. 70, 101754 (2020).

    Article  Google Scholar 

  144. Inyenyeri Clean Cooking Pilot in Kigeme Refugee Camp (Global Alliance for Clean Cookstoves, 2018).

  145. Jürisoo, M., Lambe, F. & Osborne, M. Beyond buying: the application of service design methodology to understand adoption of clean cookstoves in Kenya and Zambia. Energy Res. Social Sci. 39, 164–176 (2018).

    Article  Google Scholar 

  146. California Polytech State Univ., DfiD & Loughborough Univ. Thermal Storage with Phase Change Materials (MECS-TRIID, 2020).

  147. Shupler, M. et al. COVID-19 impacts on household energy and food security in a Kenyan informal settlement: the need for integrated approaches to the SDGs. Renew. Sustain. Energy Rev. 144, 111018 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Royal Academy of Engineering, Bboxx and UCL for funding the doctoral research of T.P. and the ‘Smart solar solutions for all’ fellowship (RCSRF1819\8\38 awarded to P.P.).

Author information

Authors and Affiliations

Authors

Contributions

T.P., A.L.A. and P.P. conceived the study. Formal analysis was done by T.P. and A.L.A. Data visualization was done by T.P. The methodology was designed by T.P. and A.L.A. J.T. and P.P. supervised the study. Validation was conducted by A.L.A., P.P. and J.T. T.P. wrote the original and final draft. T.P., A.L.A., J.T. and P.P. were responsible for reviewing and editing drafts.

Corresponding authors

Correspondence to Tash Perros or Priti Parikh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Emily Nix, Lisa Thompson and Yabei Zhang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5, Figs. 1–3 and References.

Reporting Summary

Supplementary Data

A spreadsheet of stacking drivers for each paper included in the literature review.

Supplementary Data

PRISMA checklist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perros, T., Allison, A.L., Tomei, J. et al. Behavioural factors that drive stacking with traditional cooking fuels using the COM-B model. Nat Energy 7, 886–898 (2022). https://doi.org/10.1038/s41560-022-01074-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-022-01074-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing