Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Existing methods are effective at measuring natural selection on gene expression

Matters Arising to this article was published on 07 November 2022

The Original Article was published on 12 May 2022

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Price, P. D. et al. Detecting signatures of selection on gene expression. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01761-8 (2022).

  2. Khan, Z. et al. Primate transcript and protein expression levels evolve under compensatory selection pressures. Science 342, 1100–1104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marchetto, M. C. N. et al. Differential L1 regulation in pluripotent stem cells of humans and apes. Nature 503, 525–529 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ward, M. C. & Gilad, Y. A generally conserved response to hypoxia in iPSC-derived cardiomyocytes from humans and chimpanzees. eLife 8, e42374 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Housman, G., Briscoe, E. & Gilad, Y. Evolutionary insights into primate skeletal gene regulation using a comparative cell culture model. PLoS Genet. 18, e1010073 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gokhman, D. et al. Human–chimpanzee fused cells reveal cis-regulatory divergence underlying skeletal evolution. Nat. Genet. 53, 467–476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pizzollo, J. et al. Comparative serum challenges show divergent patterns of gene expression and open chromatin in human and chimpanzee. Genome Biol. Evol. 10, 826–839 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mora-Bermúdez, F. et al. Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development. eLife 5, e18683 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ben-Nun, I. F., Montague, S. C., Houck, M. L., Ryder, O. & Loring, J. F. Generation of induced pluripotent stem cells from mammalian endangered species. Methods Mol. Biol. 1330, 101–109 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Agoglia, R. M. et al. Primate cell fusion disentangles gene regulatory divergence in neurodevelopment. Nature 592, 421–427 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wright, D. A. & Moyer, F. H. Parental influences on lactate dehydrogenase in the early development of hybrid frogs in the genus Rana. J. Exp. Zool. 163, 215–229 (1966).

    Article  CAS  PubMed  Google Scholar 

  12. Artieri, C. G. et al. Cis-regulatory evolution in prokaryotes revealed by interspecific archaeal hybrids. Sci. Rep. 7, 3986 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chang, J. et al. The molecular mechanism of a cis-regulatory adaptation in yeast. PLoS Genet. 9, e1003813 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tirosh, I., Reikhav, S., Levy, A. A. & Barkai, N. A yeast hybrid provides insight into the evolution of gene expression regulation. Science 324, 659–662 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Naranjo, S. et al. Dissecting the genetic basis of a complex cis-regulatory adaptation. PLoS Genet. 11, e1005751 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fraser, H. B. et al. Polygenic cis-regulatory adaptation in the evolution of yeast pathogenicity. Genome Res. 22, 1930–1939 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Singh-Babak, S. D., Babak, T., Fraser, H. B. & Johnson, A. D. Lineage-specific selection and the evolution of virulence in the Candida clade. Proc. Natl Acad. Sci. USA 118, e2016818118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. He, F. et al. Genome-wide analysis of cis-regulatory divergence between species in the Arabidopsis genus. Mol. Biol. Evol. 29, 3385–3395 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Díaz-Valenzuela, E., Sawers, R. H. & Cibrián-Jaramillo, A. Cis- and trans-regulatory variations in the domestication of the chili pepper fruit. Mol. Biol. Evol. 37, 1593–1603 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wittkopp, P. J., Haerum, B. K. & Clark, A. G. Evolutionary changes in cis and trans gene regulation. Nature 430, 85–88 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Combs, P. A. & Fraser, H. B. Spatially varying cis-regulatory divergence in Drosophila embryos elucidates cis-regulatory logic. PLoS Genet. 14, e1007631 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang, X., Werren, J. H. & Clark, A. G. Allele-specific transcriptome and methylome analysis reveals stable inheritance and cis-regulation of DNA methylation in Nasonia. PLoS Biol. 14, e1002500 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sánchez-Ramírez, S., Weiss, J. G., Thomas, C. G. & Cutter, A. D. Widespread misregulation of inter-species hybrid transcriptomes due to sex-specific and sex-chromosome regulatory evolution. PLoS Genet. 17, e1009409 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang, L. et al. Genetic basis for divergence in developmental gene expression in two closely related sea urchins. Nat. Ecol. Evol. 4, 831–840 (2020).

    Article  PubMed  Google Scholar 

  25. York, R. A. et al. Behavior-dependent cis regulation reveals genes and pathways associated with bower building in cichlid fishes. Proc. Natl Acad. Sci. USA 115, E11081–E11090 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mack, K. L., Campbell, P. & Nachman, M. W. Gene regulation and speciation in house mice. Genome Res. 26, 451–461 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fraser, H. B. et al. Systematic detection of polygenic cis-regulatory evolution. PLoS Genet. 7, e1002023 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Walsh, B. & Lynch, M. Evolution and Selection of Quantitative Traits (Oxford University Press, 2018).

  29. Fraser, H. B. Genome-wide approaches to the study of adaptive gene expression evolution. BioEssays 33, 469–477 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Y. et al. The formation of hybrid fish derived from hybridization of Megalobrama amblycephala (♀) × Siniperca chuatsi (♂). Aquaculture 548, 737547 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hunter B. Fraser.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraser, H.B. Existing methods are effective at measuring natural selection on gene expression. Nat Ecol Evol 6, 1836–1837 (2022). https://doi.org/10.1038/s41559-022-01889-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01889-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing