Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A para- to meta-isomerization of phenols

Abstract

Phenols and their derivatives are ubiquitous in nature and critically important industrial chemicals. Their properties are intimately linked to the relative substitution pattern of the aromatic ring, reflecting well-known electronic effects of the OH group. Because of these ortho-, para-directing effects, meta-substituted phenols have historically been more difficult to synthesize. Here we describe a procedure to transpose phenols that hinges on a regioselective diazotization of the corresponding ortho-quinone. The procedure affords the meta-substituted phenol directly from its more common and accessible para-substituted isomer, and demonstrates good chemoselectivity that enables its application in late-stage settings. By changing the electronic effect of the OH group and its trajectory of hydrogen bonding, our transposition can be used to diversify natural products and existing chemical libraries, and potentially shorten the length and cost of producing underrepresented arene isomers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Challenges and development of a 1,2-phenol transposition.
Fig. 2: Reaction development and optimization.
Fig. 3: Isomerization of complex substrates and complementarity with existing methodologies.

Similar content being viewed by others

Data availability

The data supporting the main findings of this study are available in the article, Supplementary Information and source data. Source data, including unprocessed free induction decays (FIDs) of all compounds, are available for download, free of charge, from the Open Science Framework (OSF) data repository at https://osf.io/e7q8n (ref. 50).

References

  1. Tyman, J. H. Synthetic and Natural Phenols (Elsevier, 1996).

  2. Huang, Z. & Lumb, J.-P. Phenol-directed C–H functionalization. ACS Catal. 9, 521–555 (2019).

    Article  CAS  Google Scholar 

  3. Hesse, W. & Lang, J. Phenolic resins. Ullmann’s Encycl. Ind. Chem. 26, 583–600 (2011).

    Google Scholar 

  4. Scott, K. A., Cox, P. B. & Njardarson, J. T. Phenols in pharmaceuticals: analysis of a recurring motif. J. Med. Chem. 65, 7044–7072 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Foti, M. C. Antioxidant properties of phenols. J. Pharm. Pharmacol. 59, 1673–1685 (2010).

    Article  Google Scholar 

  6. Burley, S. K. & Petsko, G. A. Aromatic–aromatic interaction: a mechanism of protein structure stabilization. Science 229, 23–28 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. Manglik, A. et al. Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nature 485, 321–326 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qiu, Z. & Li, C.-J. Transformations of less-activated phenols and phenol derivatives via C–O cleavage. Chem. Rev. 120, 10454–10515 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Quideau, S., Deffieux, D. & Pouységu, L. in Comprehensive Organic Synthesis (Second Edition) (ed. Knochel, P.) 656–740 (Elsevier, 2014).

  10. Pouységu, L., Deffieux, D. & Quideau, S. Hypervalent iodine-mediated phenol dearomatization in natural product synthesis. Tetrahedron 66, 2235–2261 (2010).

    Article  Google Scholar 

  11. Gross, K. C. & Seybold, P. G. Substituent effects on the physical properties and pKa of phenol. Int. J. Quantum Chem. 85, 569–579 (2001).

    Article  CAS  Google Scholar 

  12. Bertin, C. et al. Grass roots chemistry: meta-tyrosine, an herbicidal nonprotein amino acid. Proc. Natl Acad. Sci. USA 104, 16964–16969 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tyminski, M., Ciacka, K., Staszek, P., Gniazdowska, A. & Krasuska, U. Toxicity of meta-tyrosine. Plants 10, 2800 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Izawa, Y., Pun, D. & Stahl, S. S. Palladium-catalyzed aerobic dehydrogenation of substituted cyclohexanones to phenols. Science 333, 209–213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Izawa, Y., Zheng, C. & Stahl, S. S. Aerobic oxidative Heck/dehydrogenation reactions of cyclohexenones: efficient access to meta-substituted phenols. Angew. Chem. Int. Ed. 52, 3672–3675 (2013).

    Article  CAS  Google Scholar 

  16. Fier, P. S. & Maloney, K. M. Synthesis of complex phenols enabled by a rationally designed hydroxide surrogate. Angew. Chem. Int. Ed. 56, 4478–4482 (2017).

    Article  CAS  Google Scholar 

  17. Xu, J. et al. Highly efficient synthesis of phenols by copper-catalyzed oxidative hydroxylation of arylboronic acids at room temperature in water. Org. Lett. 12, 1964–1967 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Maleczka, R. E., Shi, F., Holmes, D. & Smith, M. R. C–H activation/borylation/oxidation: a one-pot unified route to meta-substituted phenols bearing ortho-/para-directing groups. J. Am. Chem. Soc. 125, 7792–7793 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Senior, A., Ruffell, K. & Ball, L. T. meta-Selective C–H arylation of phenols via regiodiversion of electrophilic aromatic substitution. Nat. Chem. 15, 386–394 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Li, Z. et al. A tautomeric ligand enables directed C–H hydroxylation with molecular oxygen. Science 372, 1452–1457 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yuan, C. et al. Metal-free oxidation of aromatic carbon–hydrogen bonds through a reverse-rebound mechanism. Nature 499, 192–196 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Sang, R. et al. Site‐selective C–H oxygenation via aryl sulfonium salts. Angew. Chem. Int. Ed. 58, 16161–16166 (2019).

    Article  CAS  Google Scholar 

  23. Nilova, A., Campeau, L.-C., Sherer, E. C. & Stuart, D. R. Analysis of benzenoid substitution patterns in small molecule active pharmaceutical ingredients. J. Med. Chem. 63, 13389–13396 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Schnürch, M., Spina, M., Khan, A. F., Mihovilovic, M. D. & Stanetty, P. Halogen dance reactions—a review. Chem. Soc. Rev. 36, 1046–1057 (2007).

    Article  PubMed  Google Scholar 

  25. Matsushita, K., Takise, R., Muto, K. & Yamaguchi, J. Ester dance reaction on the aromatic ring. Sci. Adv. 6, eaba7614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakahara, H. & Yamaguchi, J. Aryl dance reaction of arylbenzoheteroles. Org. Lett. 24, 8083–8087 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Bolton, A., Lanewala, M. & Pickert, P. Isomerization of tert-butylphenols using zeolite catalysts. J. Org. Chem. 33, 3415–3418 (1968).

    Article  CAS  Google Scholar 

  28. Jacquesy, J.-C. & Jouannetaud, M.-P. Mechanism of isomerization of ortho or para bromo phenols in superacids. Tetrahedron Lett. 23, 1673–1676 (1982).

    Article  CAS  Google Scholar 

  29. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Esguerra, K. V. N., Xu, W. & Lumb, J.-P. Unified synthesis of 1,2-oxy-aminoarenes via a bio-inspired phenol–amine coupling. Chem 2, 533–549 (2017).

    Article  CAS  Google Scholar 

  31. Esguerra, K. V. N. & Lumb, J.-P. A bioinspired catalytic aerobic functionalization of phenols: regioselective construction of aromatic C–N and C–O bonds. ACS Catal. 7, 3477–3482 (2017).

    Article  CAS  Google Scholar 

  32. Esguerra, K. V. N. & Lumb, J.-P. Synthesis of ortho-azophenols by formal dehydrogenative coupling of phenols and hydrazines or hydrazides. Eur. J. Chem. 23, 8596–8600 (2017).

    Article  CAS  Google Scholar 

  33. Esguerra, K. V. N., Fall, Y. & Lumb, J.-P. A biomimetic catalytic aerobic functionalization of phenols. Angew. Chem. Int. Ed. 53, 5877–5881 (2014).

    Article  CAS  Google Scholar 

  34. Magdziak, D., Rodriguez, A. A., Van De Water, R. W. & Pettus, T. R. R. Regioselective oxidation of phenols to o-quinones with o-iodoxybenzoic acid (IBX). Org. Lett. 4, 285–288 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cava, M. P., Litle, R. L. & Napier, D. R. Condensed cyclobutane aromatic systems. V. The synthesis of some α-diazoindanones: ring contraction in the indane series. J. Am. Chem. Soc. 80, 2257–2263 (1958).

    Article  CAS  Google Scholar 

  36. Nematollahi, D., Rahchamani, R. & Malekzadeh, M. Electrochemical sulfonylation of 4-tert-butylcatechol. Synth. Commun. 33, 2269–2274 (2003).

    Article  CAS  Google Scholar 

  37. Kornblum, N., Cooper, G. D. & Taylor, J. E. The chemistry of diazo compounds. II. Evidence for a free radical chain mechanism in the reduction of diazonium salts by hypophosphorous acid. J. Am. Chem. Soc. 72, 3013–3021 (1950).

    Article  CAS  Google Scholar 

  38. Clews, J. et al. Novel heterocyclic betaines relevant to the mechanism of tyrosinase-catalysed oxidation of phenols. Chem. Commun. 77–78 (1998).

  39. Clews, J. et al. Oxidative cyclisation of N,N-dialkylcatechol amines to heterocyclic betaines via o-quinones: synthetic, pulse radiolytic and enzyme studies. J. Chem. Soc. Perkin Trans. 1. 4306–4315 (2000).

  40. Huang, Z. et al. A bio-inspired synthesis of oxindoles by catalytic aerobic dual C–H functionalization of phenols. Chem. Sci. 7, 358–369 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Kosoglou, T. et al. Ezetimibe: a review of its metabolism, pharmacokinetics and drug interactions. Clin. Pharmacokinet. 44, 467–494 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Mravljak, J., Sova, M., Ko-Vac, A., Gobec, S. & Casar, Z. Process for the synthesis of ezetimibe and intermediates useful therefor. Slovenia patent (2010).

  43. Klingler, F. D. in Asymmetric Catalysis on Industrial Scale (eds Blaser, H. U., Federsel, H. J.) 171–185 (Wiley‐VCH, 2010).

  44. Stewart, I., Newhall, W. F. & Edwards, G. J. The isolation and identification of l-synephrine in the leaves and fruit of citrus. J. Biol. Chem. 239, 930–932 (1964).

    Article  CAS  Google Scholar 

  45. Lu, T.-M., Ko, H.-H., Ng, L.-T. & Hsieh, Y.-P. Free-radical-scavenging, antityrosinase, and cellular melanogenesis inhibitory activities of synthetic isoflavones. Chem. Biodivers. 12, 963–979 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, Q., Tu, T., D’Avignon, D. A. & Gross, M. L. Balance of beneficial and deleterious health effects of quinones: a case study of the chemical properties of genistein and estrone quinones. J. Am. Chem. Soc. 131, 1067–1076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ross, A. J., Lang, H. L. & Jackson, R. F. W. Much improved conditions for the Negishi cross-coupling of iodoalanine derived zinc reagents with aryl halides. J. Org. Chem. 75, 245–248 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Esguerra, K. V. N. & Lumb, J.-P. Selectivity in the aerobic dearomatization of phenols: total synthesis of dehydronornuciferine by chemo- and regioselective oxidation. Angew. Chem. Int. Ed. 57, 1514–1518 (2018).

    Article  CAS  Google Scholar 

  49. Marmelstein, A. M. et al. Tyrosinase-mediated oxidative coupling of tyrosine tags on peptides and proteins. J. Am. Chem. Soc. 142, 5078–5086 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Lumb, J.-P. Open Science Framework Data Repository, OSF, https://osf.io/e7q8n (2024).

Download references

Acknowledgements

We thank I. Mbaezue (McGill University) for help with high-performance liquid chromatography, and K. Levin (McGill University) for help with NMR. Financial support was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant to J.-P.L). S.E. acknowledges NSERC (CGS-M) and the Fonds de Recherche du Québec Nature et Technologies (FRQNT-B1X and FRQNT-B2X) for research fellowships, the Walter C. Sumner Foundation for a Memorial Fellowship and McGill University for financial support.

Author information

Authors and Affiliations

Authors

Contributions

S.E. designed and conducted experiments, and collected and analysed the data. J.-P.L. and S.E. conceptualized the project and wrote the manuscript. J.-P.L. supervised the research.

Corresponding author

Correspondence to Jean-Philip Lumb.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Junichiro Yamaguchi, Derrick Clive and Ning Jiao for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, discussion of procedures, and processed characterization data including tabulated infra-red and mass spectrometry, along with 1H- and 13C-NMR data, in both tabulated and graphical forms.

Supplementary Data

Unprocessed FIDs for all NMR characterization data, designated by compound numbers as they appear in the text of the paper or in Supplementary Information.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edelmann, S., Lumb, JP. A para- to meta-isomerization of phenols. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01512-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01512-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing