Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asymmetric photoredox catalytic formal de Mayo reaction enabled by sensitization-initiated electron transfer

Abstract

Visible-light-driven photoredox catalysis is known to be a powerful tool for organic synthesis. Its occurrence critically depends on the twice exothermic single-electron transfer processes of photosensitizers, which are governed by the redox properties of the species involved. Hence, the inherently narrow range of redox potentials of photosensitizers inevitably constrains their further availability. Sensitization-initiated electron transfer has recently been found to effectively overcome this substantial challenge. However, feasible and practical strategies for designing such complicated catalytic systems are rather scarce. Herein we report an elaborate dual-catalyst platform, with dicyanopyrazine as a visible light photosensitizer and a pyrenyl-incorporated chiral phosphoric acid as a co-sensitizer, and we demonstrate the applicability of this sensitization-initiated electron transfer strategy in an asymmetric formal de Mayo-type reaction. The catalysis platform enables otherwise thermodynamically unfavourable electron transfer processes to close the redox cycle and allows for precise access to valuable enantioenriched 1,5-diketones with a wide substrate range.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background, concept, motivation and design of the present work.
Fig. 2: Optimization of the reaction conditions.
Fig. 3: Synthetic applications and mechanistic studies.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available in the paper and its Supplementary Information. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2234002 (97), 2234003 (98), 2234004 (31), 2234005 (59), 2234006 (93), 2234007 (SX19168) and 2234008 (SX19171). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Bauer, A., Westkämper, F., Grimme, S. & Bach, T. Catalytic enantioselective reactions driven by photoinduced electron transfer. Nature 436, 1139–1140 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Nicewicz, D. A. & MacMillan, D. W. C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322, 77–80 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6898–6926 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yao, W., Bazan-Bergamino, E. A. & Ngai, M.-Y. Asymmetric photocatalysis enabled by chiral organocatalysts. ChemCatChem 14, e202101292 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Glaser, F., Kerzig, C. & Wenger, O. S. Multi-photon excitation in photoredox catalysis: concepts, applications, methods. Angew. Chem. Int. Ed. 59, 10266–10284 (2020).

    Article  CAS  Google Scholar 

  7. Glaser, F., Kerzig, C. & Wenger, O. S. Sensitization-initiated electron transfer via upconversion: mechanism and photocatalytic applications. Chem. Sci. 12, 9922–9933 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kerzig, C. & Goez, M. Combining energy and electron transfer in a supramolecular environment for the ‘green’ generation and utilization of hydrated electrons through photoredox catalysis. Chem. Sci. 7, 3862–3868 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ghosh, I., Shaikh, R. S. & König, B. Sensitization-initiated electron transfer for photoredox catalysis. Angew. Chem. Int. Ed. 56, 8544–8549 (2017).

    Article  CAS  Google Scholar 

  10. Marchini, M., Bergamini, G., Cozzi, P. G., Ceroni, P. & Balzani, V. Photoredox catalysis: the need to elucidate the photochemical mechanism. Angew. Chem. Int. Ed. 56, 12820–12821 (2017).

    Article  CAS  Google Scholar 

  11. Ghosh, I., Bardagi, J. I. & König, B. Reply to ‘Photoredox catalysis: the need to elucidate the photochemical mechanism’. Angew. Chem. Int. Ed. 56, 12822–12824 (2017).

    Article  CAS  Google Scholar 

  12. Pal, A. K., Li, C., Hanan, G. S. & Zysman-Colman, E. Blue-emissive cobalt(III) complexes and their use in the photocatalytic trifluoromethylation of polycyclic aromatic hydrocarbons. Angew. Chem. Int. Ed. 57, 8027–8031 (2018).

    Article  CAS  Google Scholar 

  13. Coles, M. S., Quach, G., Beves, J. E. & Moore, E. G. A photophysical study of sensitization-initiated electron transfer: insights into the mechanism of photoredox activity. Angew. Chem. Int. Ed. 59, 9522–9526 (2020).

    Article  CAS  Google Scholar 

  14. Strieth-Kalthoff, F., James, M. J., Teders, M., Pitzer, L. & Glorius, F. Energy transfer catalysis mediated by visible light: principles, applications, directions. Chem. Soc. Rev. 47, 7190–7202 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, Q.-Q., Zou, Y.-Q., Lu, L.-Q. & Xiao, W.-J. Visible-light-induced organic photochemical reactions through energy-transfer pathways. Angew. Chem. Int. Ed. 58, 1586–1604 (2019).

    Article  CAS  Google Scholar 

  16. De Mayo, P., Takeshita, H. & Sattar, A. B. M. A. The photochemical synthesis of 1,5-diketones and their cyclisation: a new annulation process. Proc. Chem. Soc. 1962, 119 (1962).

  17. Begley, M. J., Mellor, M. & Pattenden, G. New synthetic approaches to fused-ring carbocycles based on intramolecular photocycloadditions of 1,3-dione enol esters. J. Chem. Soc. Perkin Trans. 1 1, 1905–1912 (1983).

    Article  Google Scholar 

  18. Andrew, D., Hastings, D. J. & Weedon, A. C. The mechanism of the photochemical cycloaddition reaction between 2-cyclopentenone and polar alkenes: trapping of triplet 1,4-biradical intermediates with hydrogen selenide. J. Am. Chem. Soc. 116, 10870–10882 (1994).

    Article  CAS  Google Scholar 

  19. Kandappa, S. K., Valloli, L. K., Jockusch, S. & Sivaguru, J. Uncovering new excited state photochemical reactivity by altering the course of the De Mayo reaction. J. Am. Chem. Soc. 143, 3677–3681 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Martinez-Haya, R., Marzo, L. & König, B. Reinventing the De Mayo reaction: synthesis of 1,5-diketones or 1,5-ketoesters via visible light [2+2] cycloaddition of β-diketones or β-ketoesters with styrenes. Chem. Commun. 54, 11602–11605 (2018).

    Article  CAS  Google Scholar 

  21. Salaverri, N., Mas-Ballesté, R., Marzo, L. & Alemán, J. Visible light mediated photocatalytic [2 + 2] cycloaddition/ring-opening rearomatization cascade of electron-deficient azaarenes and vinylarenes. Commun. Chem. 3, 132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao, Q.-Q., Rehbein, J. & Reiser, O. Thermoneutral synthesis of spiro-1,4-cyclohexadienes by visible-light-driven dearomatization of benzylmalonates. Green Chem. 24, 2772–2776 (2022).

    Article  CAS  Google Scholar 

  23. Paulisch, T. O. et al. Dynamic kinetic sensitization of β-dicarbonyl compounds‒access to medium-sized rings by De Mayo-type ring expansion. Angew. Chem. Int. Ed. 61, e202112695 (2022).

    Article  CAS  Google Scholar 

  24. Zhang, W. & Luo, S. Visible-light promoted De Mayo reaction by zirconium catalysis. Chem. Commun. 58, 12979–12982 (2022).

    Article  CAS  Google Scholar 

  25. Gentry, E. C. & Knowles, R. R. Synthetic applications of proton-coupled electron transfer. Acc. Chem. Res. 49, 1546–1556 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lv, X., Xu, H., Yin, Y., Zhao, X. & Jiang, Z. Visible light-driven cooperative DPZ and chiral hydrogen-bonding catalysis. Chin. J. Chem. 38, 1480–1488 (2020).

    Article  CAS  Google Scholar 

  27. Proctor, R. S. J. & Phipps, R. J. Recent advances in Minisci-type reactions. Angew. Chem. Int. Ed. 58, 13666–13699 (2019).

    Article  CAS  Google Scholar 

  28. Yin, Y., Zhao, X., Qiao, B. & Jiang, Z. Cooperative photoredox and chiral hydrogen-bonding catalysis. Org. Chem. Front. 7, 1283–1296 (2020).

    Article  CAS  Google Scholar 

  29. Yin, Y. et al. Conjugate addition–enantioselective protonation of N-aryl glycines to α-branched 2-vinylazaarenes via cooperative photoredox and asymmetric catalysis. J. Am. Chem. Soc. 140, 6083–6087 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Proctor, R. S. J., Davis, H. J. & Phipps, R. J. Catalytic enantioselective Minisci-type addition to heteroarenes. Science 360, 419–422 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Fu, M.-C., Shang, R., Zhao, B., Wang, B. & Fu, Y. Photocatalytic decarboxylative alkylations mediated by triphenylphosphine and sodium iodide. Science 363, 1429–1434 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Li, Y. et al. Catalytic asymmetric reductive azaarylation of olefins via enantioselective radical coupling. J. Am. Chem. Soc. 144, 7805–7814 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Hloušková, Z. et al. Structure–catalytic activity in a series of push–pull dicyanopyrazine/dicyanoimidazole photoredox catalysts. ChemistrySelect 3, 4262–4270 (2018).

    Article  Google Scholar 

  34. Müller, C., Bauer, A. & Bach, T. Light-driven enantioselective organocatalysis. Angew. Chem. Int. Ed. 48, 6640–6642 (2009).

    Article  Google Scholar 

  35. Müller, C. et al. Enantioselective intramolecular [2 + 2]-photocycloaddition reactions of 4-substituted quinolones catalysed by a chiral sensitizer with a hydrogen-bonding motif. J. Am. Chem. Soc. 133, 16689–16697 (2011).

    Article  PubMed  Google Scholar 

  36. Alonso, R. & Bach, T. A chiral thioxanthone as an organocatalyst for enantioselective [2+2] photocycloaddition reactions induced by visible light. Angew. Chem. Int. Ed. 53, 4369–4371 (2014).

    Article  Google Scholar 

  37. Ding, W. et al. Bifunctional photocatalysts for enantioselective aerobic oxidation of β-ketoeaters. J. Am. Chem. Soc. 139, 63–66 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Plaza, M., Großkopf, J., Breitenlechner, S., Bannwarth, C. & Bach, T. Photochemical deracemization of primary allene amides by triplet energy transfer: a combined synthetic and theoretical study. J. Am. Chem. Soc. 143, 11209–11217 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Ryder, A. S. H. et al. Photocatalytic α-tertiary amine synthesis via C–H alkylation of unmasked primary amines. Angew. Chem. Int. Ed. 59, 14986–14991 (2020).

    Article  CAS  Google Scholar 

  40. Majumdar, K. C. & Chattopadhyay, S. K. Heterocycles in Natural Product Synthesis 267−341 (Wiley-VCH Verlag, 2011).

  41. Li, J. J. Heterocyclic Chemistry in Drug Discovery 397−611 (John Wiley & Sons, 2013).

  42. Chelucci, G. Metal-complexes of optically active amino- and imino-based pyridine ligands in asymmetric catalysis. Coord. Chem. Rev. 257, 1887–1932 (2013).

    Article  CAS  Google Scholar 

  43. Guan, A.-Y., Liu, C.-L., Sun, X.-F., Xie, Y. & Wang, M.-A. Discovery of pyridine-based agrochemicals by using intermediate derivatization methods. Bioorg. Med. Chem. 24, 342–353 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Chatterjee, A. & König, B. Birch-type photoreduction of arenes and heteroarenes by sensitized electron transfer. Angew. Chem. Int. Ed. 58, 14289–14294 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation of China (21925103 and 22171072), Henan University and Henan Normal University.

Author information

Authors and Affiliations

Authors

Contributions

Z.J. and X.S. conceived and designed the experiments. X.S. and Y.L. performed the experiments. X.S., Y.Y., X.Z. and X.B. analysed and interpreted the results. X.S., X.B. and Z.J. prepared the Supplementary Information. Z.J. and X.B. wrote the paper. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Zhiyong Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Christoph Kerzig and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

General information, general experimental procedures, synthetic applications, mechanistic studies, determination of the absolute configurations, characterization of adducts, copies of NMR spectra and references.

Supplementary Data 1

Crystallographic data for compound 97; CCDC reference 2234002.

Supplementary Data 2

Crystallographic data for compound 98; CCDC reference 2234003.

Supplementary Data 3

Crystallographic data for compound 31; CCDC reference 2234004.

Supplementary Data 4

Crystallographic data for compound 59; CCDC reference 2234005.

Supplementary Data 5

Crystallographic data for compound 93; CCDC reference 2234006.

Supplementary Data 6

Crystallographic data for compound SX19168 derived from product 73; CCDC reference 2234007.

Supplementary Data 7

Crystallographic data for compound SX19171 derived from product 89; CCDC reference 2234008.

Supplementary Data 8

Structure factors for compound 97; CCDC reference 2234002.

Supplementary Data 9

Structure factors for compound 98; CCDC reference 2234003.

Supplementary Data 10

Structure factors for compound 31; CCDC reference 2234004.

Supplementary Data 11

Structure factors for compound 59; CCDC reference 2234005.

Supplementary Data 12

Structure factors for compound 93; CCDC reference 2234006.

Supplementary Data 13

Structure factors for compound SX19168 derived from product 73; CCDC reference 2234007.

Supplementary Data 14

Structure factors for compound SX19171 derived from product 89; CCDC reference 2234008.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Liu, Y., Yin, Y. et al. Asymmetric photoredox catalytic formal de Mayo reaction enabled by sensitization-initiated electron transfer. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01502-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01502-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing