Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Photoswitchable coordination cages

Abstract

Stimuli-responsive behaviour is key to the design of smart materials, surfaces, nano-systems and effector molecules, allowing their application as switchable catalysts, molecular transporters, bioimaging probes or caged drugs. Supramolecular chemistry has embraced the widespread integration of photoswitches because of their precise spatiotemporal addressability and waste-free nature. In the vibrant area of discrete metal-mediated self-assembly, however, photoswitches are still rarely employed. Only recently has it been shown that embedding photoswitches into the organic backbones of coordination cages enables control of their host and material properties and thus unlocks the hitherto unexploited dynamic adaptivity of such systems. Here we discuss four cases where triggering ligand-integrated photoswitches leads to (1) control over disassembly/reassembly, (2) bi-stable switching between defined states, (3) interplay with thermal processes in metastable systems and (4) light-fuelled dissipative self-assembly. We highlight first clues concerning the relationship between fundamental photophysics and dynamic assembly equilibria and propose directions for future development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Introducing photoswitchable behaviour into metal-mediated assemblies.
Fig. 2: Light-triggered, reversible disassembly and reassembly of azobenzene-based metallosupramolecular structures.
Fig. 3: Bi-stable photoswitchable [Pd2L4] assemblies.
Fig. 4: Light-triggered metastable assemblies.

Similar content being viewed by others

References

  1. Volarić, J., Szymanski, W., Simeth, N. A. & Feringa, B. L. Molecular photoswitches in aqueous environments. Chem. Soc. Rev. 50, 12377–12449 (2021).

    PubMed  PubMed Central  Google Scholar 

  2. Baroncini, M., Silvi, S. & Credi, A. Photo- and redox-driven artificial molecular motors. Chem. Rev. 120, 200–268 (2020).

    CAS  PubMed  Google Scholar 

  3. Chagri, S., Ng, D. Y. W. & Weil, T. Designing bioresponsive nanomaterials for intracellular self-assembly. Nat. Rev. Chem. 6, 320–338 (2022).

    PubMed  PubMed Central  Google Scholar 

  4. Takezawa, H., Shitozawa, K. & Fujita, M. Enhanced reactivity of twisted amides inside a molecular cage. Nat. Chem. 12, 574–578 (2020).

    CAS  PubMed  Google Scholar 

  5. Cullen, W. et al. Catalysis in a cationic coordination cage using a cavity-bound guest and surface-bound anions: inhibition, activation and autocatalysis. J. Am. Chem. Soc. 140, 2821–2828 (2018).

    CAS  Google Scholar 

  6. Fang, Y. et al. Catalytic reactions within the cavity of coordination cages. Chem. Soc. Rev. 48, 4707–4730 (2019).

    CAS  PubMed  Google Scholar 

  7. Lin, H.-Y., Wang, Y.-T., Shi, X., Yang, H.-B. & Xu, L. Switchable metallacycles and metallacages. Chem. Soc. Rev. 52, 1129–1154 (2023).

    CAS  PubMed  Google Scholar 

  8. Wang, J.-X., Li, C. & Tian, H. Energy manipulation and metal-assisted photochromism in photochromic metal complex. Coord. Chem. Rev. 427, 213579 (2021).

    CAS  Google Scholar 

  9. Wezenberg, S. Light-switchable metal-organic cages. Chem. Lett. 49, 609–615 (2020).

    CAS  Google Scholar 

  10. Regeni, I. et al. Coal‐tar dye‐based coordination cages and helicates. Angew. Chem. Int. Ed. 60, 5673–5678 (2020).

    Google Scholar 

  11. Jiao, Y., Zuo, Y., Yang, H., Gao, X. & Duan, C. Photoresponse within dye-incorporated metal-organic architectures. Coordin. Chem. Rev. 430, 213648–213706 (2021).

    CAS  Google Scholar 

  12. Goeb, S. & Sallé, M. Electron-rich coordination receptors based on tetrathiafulvalene derivatives: controlling the host-guest binding. Acc. Chem. Res. 54, 1043–1055 (2021).

    CAS  PubMed  Google Scholar 

  13. Cai, L.-X. et al. Water-soluble redox-active cage hosting polyoxometalates for selective desulfurization catalysis. J. Am. Chem. Soc. 140, 4869–4876 (2018).

    CAS  Google Scholar 

  14. Ngai, C., Sanchez‐Marsetti, C. M., Harman, W. H. & Hooley, R. J. Supramolecular catalysis of the oxa‐Pictet-Spengler reaction with an endohedrally functionalized self‐assembled cage complex. Angew. Chem. Int. Ed. 132, 23711–23715 (2020).

    Google Scholar 

  15. Whitehead, M., Turega, S., Stephenson, A., Hunter, C. A. & Ward, M. D. Quantification of solvent effects on molecular recognition in polyhedral coordination cage hosts. Chem. Sci. 4, 2744–2751 (2013).

    CAS  Google Scholar 

  16. Cecot, P., Walczak, A., Markiewicz, G. & Stefankiewicz, A. R. Gating the photoactivity of azobenzene-type ligands trapped within a dynamic system of an M4L6 tetrahedral cage, an M2L2 metallocycle and mononuclear MLn complexes. Inorg. Chem. Front. 8, 5195–5200 (2021).

    CAS  Google Scholar 

  17. Ghosh, A. et al. Light-powered reversible guest release and uptake from Zn4L4 capsules. J. Am. Chem. Soc. 145, 3828–3832 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Oldknow, S. et al. Structure-switching M3L2 Ir(III) coordination cages with photo-isomerising azo-aromatic linkers. Chem. Sci. 9, 8150–8159 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hugenbusch, D., Lehr, M., Glasenapp, J.-S., von, McConnell, A. J. & Herges, R. Light‐controlled destruction and assembly: switching between two differently composed cage‐type complexes. Angew. Chem. Int. Ed. 62, e20221251 (2022).

    Google Scholar 

  20. Guo, S. et al. Light-regulating chirality of metallacages featuring dithienylethene switches. Chem. Sci. 14, 6237–6243 (2023).

    CAS  PubMed Central  Google Scholar 

  21. Uber, J. S. et al. Molecules designed to contain two weakly coupled spins with a photoswitchable spacer. Chem. Eur. J. 23, 13648–13659 (2017).

    CAS  Google Scholar 

  22. Fu, C.-Y., Chen, L., Wang, X. & Lin, L.-R. Synthesis of bis-β-diketonate lanthanide complexes with an azobenzene bridge and studies of their reversible photo/thermal isomerization properties. ACS Omega 4, 15530–15538 (2019).

    CAS  PubMed Central  Google Scholar 

  23. Zhang, Y., Zhou, Y., Gao, T., Yan, P. & Li, H. Metal-directed synthesis of quadruple-stranded helical Eu(III) molecular switch: a significant improvement in photocyclization quantum yield. Chem. Commun. 56, 13213–13216 (2020).

    CAS  Google Scholar 

  24. Zhang, Z. et al. Diastereoselective self-assembly of a triple-stranded europium helicate with light modulated chiroptical properties. Dalton Trans. 50, 4604–4612 (2021).

    CAS  PubMed  Google Scholar 

  25. Cai, L.-X., Yan, L.-L., Li, S.-C., Zhou, L.-P. & Sun, Q.-F. Stereocontrolled self-assembly and photochromic transformation of lanthanide supramolecular helicates. Dalton Trans. 47, 14204–14210 (2018).

    CAS  Google Scholar 

  26. Clever, G. H., Tashiro, S. & Shionoya, M. Light-triggered crystallization of a molecular host-guest complex. J. Am. Chem. Soc. 132, 9973–9975 (2010).

    CAS  Google Scholar 

  27. Dhamija, A. et al. Remotely controllable supramolecular rotor mounted inside a porphyrinic cage. Chem 8, 543–556 (2022).

    CAS  Google Scholar 

  28. Wang, J. et al. Altering the properties of spiropyran switches using coordination cages with different symmetries. J. Am. Chem. Soc. 144, 21244–21254 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jansze, S. M., Cecot, G. & Severin, K. Reversible disassembly of metallasupramolecular structures mediated by a metastable-state photoacid. Chem. Sci. 9, 4253–4257 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, R.-J., Pezzato, C., Berton, C. & Severin, K. Light-induced assembly and disassembly of polymers with PdnL2n-type network junctions. Chem. Sci. 12, 4981–4984 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bae, J. et al. Reversible photoreduction of Cu(II)-coumarin metal-organic polyhedra. Chem. Commun. 53, 9250–9253 (2017).

    CAS  Google Scholar 

  32. Kishi, N. et al. Facile catch and release of fullerenes using a photoresponsive molecular tube. J. Am. Chem. Soc. 135, 12976–12979 (2013).

    CAS  Google Scholar 

  33. Fu, S. et al. Light-triggered reversible disassembly of stimuli-responsive coordination metallosupramolecular Pd2L4 cages mediated by azobenzene-containing ligands. Mater. Chem. Front. 3, 1238–1243 (2019).

    CAS  Google Scholar 

  34. Kennedy, A. D. W., DiNardi, R. G., Fillbrook, L. L., Donald, W. A. & Beves, J. E. Visible‐light switching of metallosupramolecular assemblies. Chem. Eur. J. 28, e2021044 (2022).

    Google Scholar 

  35. DiNardi, R. et al. Visible-light-responsive self-assembled complexes: improved photoswitching properties by metal ion coordination. Angew. Chem. Int. Ed. 61, e202205701 (2022).

    CAS  Google Scholar 

  36. Zhu, J., Chen, X., Jin, X. & Wang, Q. Light-driven interconversion of Pd2L4 cage and mononuclear PdL2 mediated by the isomerization of azobenzene ligand. Chin. Chem. Lett. 55, 108002 (2022).

    Google Scholar 

  37. Han, M. et al. Light‐triggered guest uptake and release by a photochromic coordination cage. Angew. Chem. Int. Ed. 52, 1319–1323 (2013).

    CAS  Google Scholar 

  38. Li, R.-J., Tessarolo, J., Lee, H. & Clever, G. H. Multi-stimuli control over assembly and guest binding in metallo-supramolecular hosts based on dithienylethene photoswitches. J. Am. Chem. Soc. 143, 3865–3873 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, R. et al. Successive photoswitching and derivatization effects in photochromic dithienylethene‐based coordination cages. ChemPhotoChem 3, 378–383 (2019).

    CAS  Google Scholar 

  40. Li, R.-J., Holstein, J. J., Hiller, W. G., Andréasson, J. & Clever, G. H. Mechanistic interplay between light switching and guest binding in photochromic [Pd2dithienylethene4] coordination cages. J. Am. Chem. Soc. 141, 2097–2103 (2019).

    CAS  PubMed  Google Scholar 

  41. Juber, S., Wingbermühle, S., Nuernberger, P., Clever, G. H. & Schäfer, L. V. Thermodynamic driving forces of guest confinement in a photoswitchable cage. Phys. Chem. Chem. Phys. 23, 7321–7332 (2021).

    CAS  Google Scholar 

  42. Artmann, K. et al. Steering the ultrafast opening and closure dynamics of a photochromic coordination cage by guest molecules. Angew. Chem. Int. Ed. 61, e202212112 (2022).

    CAS  Google Scholar 

  43. Stuckhardt, C. et al. A chiral self-sorting photoresponsive coordination cage based on overcrowded alkenes. Beilstein J. Org. Chem. 15, 2767–2773 (2019).

    CAS  PubMed Central  Google Scholar 

  44. Qin, Y., Xiong, J., Li, Q., Zhang, Y. & Zeng, M. H. Construction of photo-responsive Pd2L4-type nanocages based on Feringa’s second-generation motor and its guest binding ability for C60. Chem. Eur. J. 28, e2022018 (2022).

    Google Scholar 

  45. Han, M. et al. Light‐controlled interconversion between a self‐assembled triangle and a rhombicuboctahedral sphere. Angew. Chem. Int. Ed. 55, 445–449 (2016).

    CAS  Google Scholar 

  46. Gu, Y. et al. Photoswitching topology in polymer networks with metal–organic cages as crosslinks. Nature 560, 65–69 (2018).

    CAS  PubMed  Google Scholar 

  47. Wei, S. C. et al. Creating coordination-based cavities in a multiresponsive supramolecular gel. Chem. Eur. J. 21, 7418–7427 (2015).

    CAS  PubMed  Google Scholar 

  48. Lee, H. et al. Light-powered dissipative assembly of diazocine coordination cages. J. Am. Chem. Soc. 7, 3099–3105 (2022).

    Google Scholar 

  49. Rossum, S. A. P., van, Tena-Solsona, M., Esch, J. H., van, Eelkema, R. & Boekhoven, J. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chem. Soc. Rev. 46, 5519–5535 (2017).

    PubMed  Google Scholar 

  50. Sorrenti, A., Leira-Iglesias, J., Markvoort, A. J., Greef, T. F. Ade & Hermans, T. M. Non-equilibrium supramolecular polymerization. Chem. Soc. Rev. 46, 5476–5490 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Leira-Iglesias, J., Tassoni, A., Adachi, T., Stich, M. & Hermans, T. M. Oscillations, travelling fronts and patterns in a supramolecular system. Nat. Nanotechnol. 13, 1021–1027 (2018).

    CAS  PubMed  Google Scholar 

  52. Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).

    CAS  PubMed  Google Scholar 

  53. Siewertsen, R. et al. Highly efficient reversible ZE photoisomerization of a bridged azobenzene with visible light through resolved S1(nπ*) absorption bands. J. Am. Chem. Soc. 131, 15594–15595 (2009).

    CAS  PubMed  Google Scholar 

  54. Ovalle, M. et al. Light‐fueled transformations of a dynamic cage‐based molecular system. Angew. Chem. Int. Ed. 62, e202214495 (2023).

    CAS  Google Scholar 

  55. Nieland, E., Voss, J., Mix, A. & Schmidt, B. M. Photoresponsive dissipative macrocycles using visible‐light‐switchable azobenzenes. Angew. Chem. Int. Ed. 61, e202212745 (2022).

    CAS  Google Scholar 

  56. Thaggard, G. C. et al. Metal-photoswitch friendship: from photochromic complexes to functional materials. J. Am. Chem. Soc. 144, 23249–23263 (2022).

    CAS  PubMed  Google Scholar 

  57. Pullen, S., Tessarolo, J. & Clever, G. H. Increasing structural and functional complexity in self-assembled coordination cages. Chem. Sci. 12, 7269–7293 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under the GRK2376 ‘Confinement Controlled Chemistry’ project no. 331085229, under Germany’s Excellence Strategy EXC 2033 “RESOLV”, project no. 390677874, and grant no. CL 489/2-2.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception, discussion and writing of the manuscript.

Corresponding authors

Correspondence to Jacopo Tessarolo or Guido H. Clever.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Ben Pilgrim, Yuwei Gu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benchimol, E., Tessarolo, J. & Clever, G.H. Photoswitchable coordination cages. Nat. Chem. 16, 13–21 (2024). https://doi.org/10.1038/s41557-023-01387-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01387-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing