Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An electroaffinity labelling platform for chemoproteomic-based target identification

Abstract

Target identification involves deconvoluting the protein target of a pharmacologically active, small-molecule ligand, a process that is critical for early drug discovery yet technically challenging. Photoaffinity labelling strategies have become the benchmark for small-molecule target deconvolution, but covalent protein capture requires the use of high-energy ultraviolet light, which can complicate downstream target identification. Thus, there is a strong demand for alternative technologies that allow for controlled activation of chemical probes to covalently label their protein target. Here we introduce an electroaffinity labelling platform that leverages the use of a small, redox-active diazetidinone functional group to enable chemoproteomic-based target identification of pharmacophores within live cell environments. The underlying discovery to enable this platform is that the diazetidinone can be electrochemically oxidized to reveal a reactive intermediate useful for covalent modification of proteins. This work demonstrates the electrochemical platform to be a functional tool for drug-target identification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ECAL as a new labelling method for drug-target identification.
Fig. 2: Development of a redox-active small molecule for ECAL.
Fig. 3: Use of ECAL enables targeted covalent capture across a diverse set of protein–ligand pairs.
Fig. 4: ECAL-mediated enrichment of JQ1 and dasatinib protein targets in live cells.
Fig. 5: Application of ECAL for the chemoproteomic profiling of an SR9009-based DZE probe in live cells.

Similar content being viewed by others

Data availability

Data supporting the main findings of this work are available within the article and Supplementary Information. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under the deposition number CCDC 2093827 (11). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper.

References

  1. Bunnage, M. E., Chekler, E. L. P. & Jones, L. H. Target validation using chemical probes. Nat. Chem. Biol. 9, 195–199 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Emmerich, C. H. et al. Improving target assessment in biomedical research: the GOT-IT recommendations. Nat. Rev. Drug Discov. 20, 64–81 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Kiriiri, G. K., Njogu, P. M. & Mwangi, A. N. Exploring different approaches to improve the success of drug discovery and development projects: a review. Future J. Pharm. Sci. 6, 27 (2020).

    Article  Google Scholar 

  4. Bunnage, M. E. Getting pharmaceutical R&D back on target. Nat. Chem. Biol. 7, 335–339 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Schenone, M., Dančík, V., Wagner, B. K. & Clemons, P. A. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 9, 232–240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Park, J., Koh, M. & Park, S. B. From noncovalent to covalent bonds: a paradigm shift in target protein identification. Mol. Biosyst. 9, 544–550 (2012).

    Article  Google Scholar 

  7. Sumranjit, J. & Chung, S. J. Recent advances in target characterization and identification by photoaffinity probes. Molecules 18, 10425–10451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smith, E. & Collins, I. Photoaffinity labeling in target- and binding-site identification. Future Med. Chem. 7, 159–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Li, Z. et al. Design and synthesis of minimalist terminal alkyne‐containing diazirine photo‐crosslinkers and their incorporation into kinase inhibitors for cell‐ and tissue‐based proteome profiling. Angew. Chem. Int. Ed. 52, 8551–8556 (2013).

    Article  CAS  Google Scholar 

  10. Murale, D. P., Hong, S. C., Haque, Md. M. & Lee, J.-S. Photo-affinity labeling (PAL) in chemical proteomics: a handy tool to investigate protein–protein interactions (PPIs). Proteome Sci. 15, 14 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. West, A. V. et al. Labeling preferences of diazirines with protein biomolecules. J. Am. Chem. Soc. 143, 6691–6700 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Conway, L. P. et al. Evaluation of fully-functionalized diazirine tags for chemical proteomic applications. Chem. Sci. 12, 7839–7847 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brunner, J. New photolabeling and crosslinking methods. Annu. Rev. Biochem. 62, 483–514 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Kojetin, D. J. & Burris, T. P. REV-ERB and ROR nuclear receptors as drug targets. Nat. Rev. Drug Discov. 13, 197–216 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Uriz-Huarte, A. et al. The transcriptional repressor REV-ERB as a novel target for disease. Bioorg. Med. Chem. Lett. 30, 127395 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Solt, L. A. et al. Regulation of circadian behavior and metabolism by synthetic REV-ERB agonists. Nature 485, 62–68 (2021).

    Article  Google Scholar 

  17. Mackay, A. S., Payne, R. J. & Malins, L. R. Electrochemistry for the chemoselective modification of peptides and proteins. J. Am. Chem. Soc. 144, 23–41 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Alvarez-Dorta, D. et al. Electrochemically promoted tyrosine-click-chemistry for protein labeling. J. Am. Chem. Soc. 140, 17120–17126 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Song, C. et al. Electrochemical oxidation induced selective tyrosine bioconjugation for the modification of biomolecules. Chem. Sci. 10, 7982–7987 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Toyama, E. et al. Electrochemical tryptophan-selective bioconjugation. Preprint at chemRxiv https://doi.org/10.26434/chemrxiv.7795484 (2019).

  21. Stang, P. J. Unsaturated carbenes. Chem. Rev. 78, 383–405 (1978).

    Article  CAS  Google Scholar 

  22. Minard, A., Liano, D., Wang, X. & Antonio, M. D. The unexplored potential of quinone methides in chemical biology. Bioorgan. Med. Chem. 27, 2298–2305 (2019).

    Article  CAS  Google Scholar 

  23. Tomioka, H., Hayashi, N., Izawa, Y. & Liu, M. T. H. Photolysis of 3-chlorodiazirine in the presence of alkenes. Kinetic evidence for intervention of a carbene–alkene intermediate in addition of chlorocarbene to alkene. J. Am. Chem. Soc. 106, 454–456 (1984).

    Article  CAS  Google Scholar 

  24. Voica, A.-F., Mendoza, A., Gutekunst, W. R., Fraga, J. O. & Baran, P. S. Guided desaturation of unactivated aliphatics. Nat. Chem. 4, 629–635 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, L., Li, Y., Fu, N., Zhang, L. & Luo, S. Catalytic asymmetric electrochemical α‐arylation of cyclic β‐ketocarbonyls with anodic benzyne intermediates. Angew. Chem. Int. Ed. 59, 14347–14351 (2020).

    Article  CAS  Google Scholar 

  26. Funder, E. D., Trads, J. B. & Gothelf, K. V. Oxidative activation of dihydropyridine amides to reactive acyl donors. Org. Biomol. Chem. 13, 185–198 (2014).

    Article  Google Scholar 

  27. Sterk, H., Uray, G. & Ziegler, E. Über Einen Versuch Zur Berechnung Der Fragmentation von β-Lactamen Mittels Der EHT-Methode. Monatsh. Chem. 103, 615–623 (1972).

    Article  CAS  Google Scholar 

  28. Jungheim, L. N. in Advances in Heterocyclic Chemistry Vol. 110 (ed. Katritzky, A.) Ch. 5, 145–174 (Elsevier, 2013).

  29. Zuhl, A. M. et al. Competitive activity-based protein profiling identifies aza-β-lactams as a versatile chemotype for serine hydrolase inhibition. J. Am. Chem. Soc. 134, 5068–5071 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, C. & Szostak, M. Twisted amides: from obscurity to broadly useful transition‐metal‐catalyzed reactions by N−C amide bond activation. Chem. Eur. J. 23, 7157–7173 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Berlin, J. M. & Fu, G. C. Enantioselective nucleophilic catalysis: the synthesis of aza‐β‐lactams through [2+2] cycloadditions of ketenes with azo compounds. Angew. Chem. Int. Ed. 47, 7048–7050 (2008).

    Article  CAS  Google Scholar 

  32. Tyler, D. S. et al. Click chemistry enables preclinical evaluation of targeted epigenetic therapies. Science 356, 1397–1401 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jeong, S.-H., Jeon, Y.-J. & Park, S. J. Inhibitory effects of dieckol on hypoxia-induced epithelial-mesenchymal transition of HT29 human colorectal cancer cells. Mol. Med. Rep. 14, 5148–5154 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu, C., Wang, L., Zhu, Z., Bao, N. & Gu, H. Trans-membrane electron transfer in red blood cells immobilized in a chitosan film on a glassy carbon electrode. Microchim. Acta 181, 55–61 (2014).

    Article  CAS  Google Scholar 

  35. Kumar, A. et al. The ins and outs of microorganism–electrode electron transfer reactions. Nat. Rev. Chem. 1, 0024 (2017).

    Article  CAS  Google Scholar 

  36. Mohawk, J. A., Green, C. B. & Takahashi, J. S. Central and peripheral circadian clocks in mammals. Neuroscience 35, 445–462 (2012).

    CAS  Google Scholar 

  37. Pariollaud, M. et al. Circadian clock component REV-ERBα controls homeostatic regulation of pulmonary inflammation. J. Clin. Invest. 128, 2281–2296 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Woldt, E. et al. Rev-Erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat. Med. 19, 1039–1046 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Geldof, L., Deventer, K., Roels, K., Tudela, E. & Eenoo, P. V. In vitro metabolic studies of REV-ERB agonists SR9009 and SR9011. Int. J. Mol. Sci. 17, 1676 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chang, C. et al. The nuclear receptor REV-ERBα modulates Th17 cell-mediated autoimmune disease. Proc. Natl Acad. Sci. USA 116, 18528–18536 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sulli, G. et al. Pharmacological activation of REV-ERBs is lethal in cancer and oncogene induced senescence. Nature 553, 351–355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dierickx, P. et al. SR9009 has REV-ERB–independent effects on cell proliferation and metabolism. Proc. Natl Acad. Sci. USA 116, 12147–12152 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Science Foundation Center for Synthetic Organic Electrochemistry CHE-2002158 (exploration and development of electrochemically active functional group), National Institutes of Health grant GM-118176 (synthesis of elaborated probes for biological studies) and gifts from Merck & Co., Inc., Kenilworth, NJ, USA (synthesis of elaborated probes for biological studies). G.N.H. was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), grant numbers 419055018/HE 8427/1-1. A.F.S. was supported by the Lundbeck Foundation (grant number R208-2015-3354), E.R.-C. was supported by the Galician Programme for Research, Innovation and Growth for 2018. We thank D.-H. Huang and L. Pasternack (Scripps Research) for assistance with NMR spectroscopy; and J. Chen, B. Sanchez and E. Sturgell (Automated Synthesis Facility, Scripps Research) for purification of compounds and acquisition of HRMS data. We thank T. Wyche (Merck & Co., Inc.) for assistance with HRMS data, S. Ingale (Merck & Co., Inc.) for assistance with peptide synthesis, and J. Oh (Merck & Co., Inc.) for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

R.C.O., O.O.F. and P.S.B. conceptualized the study. Y.K., G.N.H., A.F.S., J.C.V., E.R.-C. and P.S.B. designed and performed chemical experiments. K.A.R., L.A.A., A.K.O., L.R.R., R.C.O. and O.O.F. designed and performed biological experiments. All the authors contributed to data analysis. Y.K., K.A.R., R.C.O., O.O.F. and P.S.B. wrote the paper.

Corresponding authors

Correspondence to Rob C. Oslund, Olugbeminiyi O. Fadeyi or Phil S. Baran.

Ethics declarations

Competing interests

K.A.R., L.A.A., A.K.O., L.R.R., R.C.O., and O.O.F. are/were employees of Merck and Co., Inc. during the preparation of this manuscript.

Peer review

Peer review information

Nature Chemistry thanks Sébastien Gouin, Christina Woo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Nature chemistry Supplementary Information final.

Reporting Summary

Supplementary Information

Supplementary data table.

Supplementary Data 1

Source data for Supplementary Information.

Supplementary Data 2

Unprocessed western blots for Supplementary data.

Supplementary Data 3

Microscopy images for Supplementary data.

Supplementary Data 4

X-ray crystal structure CIF file.

Source data

Source Data Fig. 3

Unprocessed western blot.

Source Data Fig. 3

Peptide mapping spectral count.

Source Data Fig. 4

Gene Ontology data.

Source Data Fig. 5

Cell assay data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawamata, Y., Ryu, K.A., Hermann, G.N. et al. An electroaffinity labelling platform for chemoproteomic-based target identification. Nat. Chem. 15, 1267–1275 (2023). https://doi.org/10.1038/s41557-023-01240-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01240-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research