Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeted activation in localized protein environments via deep red photoredox catalysis

Abstract

State-of-the-art photoactivation strategies in chemical biology provide spatiotemporal control and visualization of biological processes. However, using high-energy light (λ < 500 nm) for substrate or photocatalyst sensitization can lead to background activation of photoactive small-molecule probes and reduce its efficacy in complex biological environments. Here we describe the development of targeted aryl azide activation via deep red-light (λ = 660 nm) photoredox catalysis and its use in photocatalysed proximity labelling. We demonstrate that aryl azides are converted to triplet nitrenes via a redox-centric mechanism and show that its spatially localized formation requires both red light and a photocatalyst-targeting modality. This technology was applied in different colon cancer cell systems for targeted protein environment labelling of epithelial cell adhesion molecule (EpCAM). We identified a small subset of proteins with previously known and unknown association to EpCAM, including CDH3, a clinically relevant protein that shares high tumour-selective expression with EpCAM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Selective and targeted uses of aryl azides in chemical biology require low-energy light.
Fig. 2: DR photoredox catalysis overcomes fundamental photolytic limitations of aryl azides.
Fig. 3: Computational analysis reveals a redox-neutral, electron-transfer pathway for triplet nitrene formation.
Fig. 4: Mechanistic differences exist between singlet and triplet perfluoroaryl nitrenes.
Fig. 5: DR-light-mediated protein labelling.
Fig. 6: DR-light-mediated photocatalytic labelling of cellular environments.

Similar content being viewed by others

Data availability

Data supporting the main findings of this study are available in the Article, Supplementary Information and Source Data. All Supplementary figures, experimental details and synthesis information are included in the Supplementary Information. Unprocessed proteomics results are available in the Supplementary Data Table. Raw proteomics data are deposited on MassIVE (public data access: ftp://massive.ucsd.edu/MSV000088973/). Source data are provided with this Paper.

References

  1. Kotzyba-Hibert, F., Kapfer, I. & Goeldner, M. Recent trends in photoaffinity labeling. Angew. Chem. Int. Ed. 34, 1296–1312 (1995).

    Article  CAS  Google Scholar 

  2. Murale, D. P., Hong, S. C., Haque, Md. M. & Lee, J.-S. Photo-affinity labeling (PAL) in chemical proteomics: a handy tool to investigate protein-protein interactions (PPIs). Proteome Sci. 15, 14 (2017).

    Article  Google Scholar 

  3. Sadhu, K. K., Eierhoff, T., Römer, W. & Winssinger, N. Photoreductive uncaging of fluorophore in response to protein oligomers by templated reaction in vitro and in cellulo. J. Am. Chem. Soc. 134, 20013–20016 (2012).

    Article  CAS  Google Scholar 

  4. Geng, J. et al. Switching on prodrugs using radiotherapy. Nat. Chem. 13, 805–810 (2021).

    Article  CAS  Google Scholar 

  5. Holland, J. P., Gut, M., Klingler, S., Fay, R. & Guillou, A. Photochemical reactions in the synthesis of protein-drug conjugates. Chem. Eur. J. 26, 33–48 (2020).

    Article  CAS  Google Scholar 

  6. Fantoni, N. Z., El-Sagheer, A. H. & Brown, T. A hitchhiker’s guide to click-chemistry with nucleic acids. Chem. Rev. 121, 7122–7154 (2021).

    Article  CAS  Google Scholar 

  7. Deb, T., Tu, J. & Franzini, R. M. Mechanisms and substituent effects of metal-free bioorthogonal reactions. Chem. Rev. 121, 6850–6914 (2021).

    Article  CAS  Google Scholar 

  8. Heiss, T. K., Dorn, R. S. & Prescher, J. A. Bioorthogonal reactions of triarylphosphines and related analogues. Chem. Rev. 121, 6802–6849 (2021).

    Article  CAS  Google Scholar 

  9. Chin, J. W. et al. Addition of p-azido-l-phenylalanine to the genetic code of Escherichia coli. J. Am. Chem. Soc. 124, 9026–9027 (2002).

    Article  CAS  Google Scholar 

  10. Kotani, N. et al. Biochemical visualization of cell surface molecular clustering in living cells. Proc. Natl Acad. Sci. USA 105, 7405–7409 (2008).

    Article  CAS  Google Scholar 

  11. Gritsan, N. P. & Platz, M. S. Kinetics, spectroscopy and computational chemistry of arylnitrenes. Chem. Rev. 106, 3844–3867 (2006).

    Article  CAS  Google Scholar 

  12. DeGraff, B. A., Gillespie, D. W. & Sundberg, R. J. Phenyl nitrene. Flash photolytic investigation of the reaction with secondary amines. J. Am. Chem. Soc. 96, 7491–7496 (1974).

    Article  CAS  Google Scholar 

  13. Li, Y.-Z., Kirby, J. P., George, M. W., Poliakoff, M. & Schuster, G. B. 1,2-Didehydroazepines from the photolysis of substituted aryl azides: analysis of their chemical and physical properties by time-resolved spectroscopic methods. J. Am. Chem. Soc. 110, 8092–8098 (1988).

    Article  CAS  Google Scholar 

  14. Marcinek, A. & Platz, M. S. Deduction of the activation parameters for ring expansion and intersystem crossing in fluorinated singlet phenylnitrenes. J. Phys. Chem. 97, 12674–12677 (1993).

    Article  CAS  Google Scholar 

  15. Liu, L.-H. & Yan, M. Perfluorophenyl azides: new applications in surface functionalization and nanomaterial synthesis. Acc. Chem. Res. 43, 1434–1443 (2010).

    Article  CAS  Google Scholar 

  16. Xie, S., Sundhoro, M., Houk, K. N. & Yan, M. Electrophilic azides for materials synthesis and chemical biology. Acc. Chem. Res. 53, 937–948 (2020).

    Article  CAS  Google Scholar 

  17. Poe, R., Schnapp, K., Young, M. J. T., Grayzar, J. & Platz, M. S. Chemistry and kinetics of singlet pentafluorophenylnitrene. J. Am. Chem. Soc. 114, 5054–5067 (1992).

    Article  CAS  Google Scholar 

  18. Soundararajan, N. & Platz, M. S. Descriptive photochemistry of polyfluorinated azide derivatives of methyl benzoate. J. Org. Chem. 55, 2034–2044 (1990).

    Article  CAS  Google Scholar 

  19. Marcinek, A. et al. Unusually long lifetimes of the singlet nitrenes derived from 4-azido-2,3,5,6-tetrafluorobenzamides. J. Phys. Chem. 98, 412–419 (1994).

    Article  CAS  Google Scholar 

  20. Schnapp, K. A., Poe, R., Leyva, E., Soundararajan, N. & Platz, M. S. Exploratory photochemistry of fluorinated aryl azides. Implications for the design of photoaffinity labeling reagents. Bioconjug. Chem. 4, 172–177 (1993).

    Article  CAS  Google Scholar 

  21. Keana, J. F. W. & Cai, S. X. New reagents for photoaffinity labeling: synthesis and photolysis of functionalized perfluorophenyl azides. J. Org. Chem. 55, 3640–3647 (1990).

    Article  CAS  Google Scholar 

  22. Kanakarajan, K., Goodrich, R., Young, M. J. T., Soundararajan, S. & Platz, M. S. EPR spectroscopy of triplet aryl nitrenes covalently bound to α-chymotrypsin. Application of low-temperature methods to photoaffinity labeling. J. Am. Chem. Soc. 110, 6536–6541 (1988).

    Article  CAS  Google Scholar 

  23. Ryu, K. A., Kaszuba, C. M., Bissonnette, N. B., Oslund, R. C. & Fadeyi, O. O. Interrogating biological systems using visible-light-powered catalysis. Nat. Rev. Chem. 5, 322–337 (2021).

    Article  CAS  Google Scholar 

  24. Huang, H. et al. Targeted photoredox catalysis in cancer cells. Nat. Chem. 11, 1041–1048 (2019).

    Article  CAS  Google Scholar 

  25. Geri, J. B. et al. Microenvironment mapping via Dexter energy transfer on immune cells. Science 367, 1091–1097 (2020).

    Article  CAS  Google Scholar 

  26. Wright, M. H. & Sieber, S. A. Chemical proteomics approaches for identifying the cellular targets of natural products. Nat. Prod. Rep. 33, 681–708 (2016).

    Article  CAS  Google Scholar 

  27. Liu, J., Hadad, C. M. & Platz, M. S. The reaction of triplet nitrenes with oxygen: a computational study. Org. Lett. 7, 549–552 (2005).

    Article  CAS  Google Scholar 

  28. Chen, Y., Kamlet, A. S., Steinman, J. B. & Liu, D. R. A biomolecule-compatible visible-light-induced azide reduction from a DNA-encoded reaction-discovery system. Nat. Chem. 3, 146–153 (2011).

    Article  Google Scholar 

  29. Farney, E. P. & Yoon, T. P. Visible-light sensitization of vinyl azides by transition-metal photocatalysis. Angew. Chem. Int. Ed. 53, 793–797 (2014).

    Article  CAS  Google Scholar 

  30. Wang, H. et al. Selective mitochondrial protein labeling enabled by biocompatible photocatalytic reactions inside live cells. JACS Au. 1, 1066–1075 (2021).

    Article  CAS  Google Scholar 

  31. Ravetz, B. D. et al. Development of a platform for near-infrared photoredox catalysis. ACS Cent. Sci. 6, 2053–2059 (2020).

    Article  CAS  Google Scholar 

  32. Matikonda, S. S. et al. Mechanistic evaluation of bioorthogonal decaging with trans-cyclooctene: the effect of fluorine substituents on aryl azide reactivity and decaging from the 1,2,3-triazoline. Bioconjugate Chem. 29, 324–334 (2018).

    Article  CAS  Google Scholar 

  33. Ásgeirsson, V. et al. Nudged elastic band method for molecular reactions using energy-weighted springs combined with eigenvector following. J. Chem. Theory Comput. 17, 4929–4945 (2021).

    Article  Google Scholar 

  34. Bissonnette, N. B. et al. Design of a multiuse photoreactor to enable visible-light photocatalytic chemical transformations and labeling in live cells. ChemBioChem 21, 3555–3562 (2020).

    Article  CAS  Google Scholar 

  35. Keller, L., Werner, S. & Pantel, K. Biology and clinical relevance of EpCAM. Cell Stress 3, 165–180 (2019).

    Article  CAS  Google Scholar 

  36. Macdonald, J. et al. EpCAM immunotherapy versus specific targeted delivery of drugs. Cancers 10, 19 (2018).

    Article  Google Scholar 

  37. Shafraz, O., Xie, B., Yamada, S. & Sivasankar, S. Mapping transmembrane binding partners for E-cadherin ectodomains. Proc. Natl Acad. Sci. USA 117, 31157–31165 (2020).

    Article  CAS  Google Scholar 

  38. Szklarczyk, D. et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49, D605–D612 (2021).

    Article  CAS  Google Scholar 

  39. Pan, M. et al. Interactome analysis reveals endocytosis and membrane recycling of EpCAM during differentiation of embryonic stem cells and carcinoma cells. iScience 24, 103179 (2021).

    Article  CAS  Google Scholar 

  40. Huttlin, E. L. et al. Architecture of the human interactome defines protein communities and disease networks. Nature 545, 505–509 (2017).

    Article  CAS  Google Scholar 

  41. Chatr-aryamontri, A. et al. The BioGRID interaction database: 2017 update. Nucleic Acids Res. 45, D369–D379 (2017).

    Article  CAS  Google Scholar 

  42. Bechtel, T. J., Reyes-Robles, T., Fadeyi, O. O. & Oslund, R. C. Strategies for monitoring cell–cell interactions. Nat. Chem. Biol. 17, 641–652 (2021).

    Article  CAS  Google Scholar 

  43. Reiser, A., Willets, F. W., Terry, G. C., Williams, V. & Marley, R. Photolysis of aromatic azides. Part 4—Lifetimes of aromatic nitrenes and absolute rates of some of their reactions. Trans. Faraday Soc. 64, 3265–3275 (1968).

    Article  CAS  Google Scholar 

  44. Bausch-Fluck, D. et al. The in silico human surfaceome. Proc. Natl Acad. Sci. USA 115, E10988–E10997 (2018).

    Article  CAS  Google Scholar 

  45. Carlson, B., Phelan, G. D., Benedict, J. B., Kaminsky, W. & Dalton, L. Crystal structures and luminescence properties of osmium complexes of cis-1,2-vinylenebis(diphenylarsine) and pyridyl ligands: possible evidence for metal d, ligand d backbonding. Inorg. Chim. Acta 359, 1093–1102 (2006).

    Article  CAS  Google Scholar 

  46. Towns, J. et al. XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

Research was supported by the NIH National Institute of General Medical Sciences (R01-GM125206) and gifts from Merck & Co., Inc. J.L.W was funded in part by the Columbia Center for Computational Electrochemistry (CCCE). This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant no. ACI-154856246. In particular, we used San Diego Computing Center’s Expanse resources under allocation ID COL151.

Author information

Authors and Affiliations

Authors

Contributions

N.E.S.T., K.A.R., R.C.O., O.O.F. and T.R. conceived the work. N.E.S.T., K.A.R., A.K.O., D.C.C., R.C.O., O.O.F. and T.R. designed and executed experiments. N.E.S.T., K.A.R., D.C.C., R.C.O., O.O.F. and T.R. interpreted results. J.L.W. and D.R.R. designed and executed chemistry-based computations. J.L.W. and D.R.R. interpreted chemistry-based computational results. N.E.S.T., K.A.R., R.C.O., O.O.F. and T.R. wrote the manuscript, with input from all authors.

Corresponding authors

Correspondence to Rob C. Oslund, Olugbeminiyi O. Fadeyi or Tomislav Rovis.

Ethics declarations

Competing interests

K.A.R., A.K.O., R.C.O. and O.O.F. were employed by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., during the experimental planning, execution and/or preparation of this manuscript. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Robin Bon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–44, NMR and HRMS data of all new compounds, uncropped western blot images of Supplementary figures.

Reporting Summary

Supplementary Table 1

Excel-based table listing processed proteomics data for EpCAM-targeted proximity labelling.

Supplementary Table 2

Excel-based table listing pre-processed proteomics data for EpCAM-targeted proximity labelling.

Supplementary Data 1

Source data for Supplementary figures.

Supplementary Data 2

Computational cartesian coordinates.

Source data

Source Data Fig. 2B

UV-vis source data for Fig 2b.

Source Data Fig. 5

Statistical source data for Fig. 5b,c.

Source Data Fig. 5_2

Unprocessed western blots for Fig. 5b,c.

Source Data Fig. 6

Unprocessed western blot for Fig. 6b.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tay, N.E.S., Ryu, K.A., Weber, J.L. et al. Targeted activation in localized protein environments via deep red photoredox catalysis. Nat. Chem. 15, 101–109 (2023). https://doi.org/10.1038/s41557-022-01057-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01057-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing