Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Light-activated tetrazines enable precision live-cell bioorthogonal chemistry

Abstract

Bioorthogonal cycloaddition reactions between tetrazines and strained dienophiles are widely used for protein, lipid and glycan labelling because of their extremely rapid kinetics. However, controlling this chemistry in the presence of living mammalian cells with a high degree of spatial and temporal precision remains a challenge. Here we demonstrate a versatile approach to light-activated formation of tetrazines from photocaged dihydrotetrazines. Photouncaging, followed by spontaneous transformation to reactive tetrazine, enables live-cell spatiotemporal control of rapid bioorthogonal cycloaddition with dienophiles such as trans-cyclooctenes. Photocaged dihydrotetrazines are stable in conditions that normally degrade tetrazines, enabling efficient early-stage incorporation of bioorthogonal handles into biomolecules such as peptides. Photocaged dihydrotetrazines allow the use of non-toxic light to trigger tetrazine ligations on living mammalian cells. By tagging reactive phospholipids with fluorophores, we demonstrate modification of HeLa cell membranes with single-cell spatial resolution. Finally, we show that photo-triggered therapy is possible by coupling tetrazine photoactivation with strategies that release prodrugs in response to tetrazine ligation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Light-controlled bioorthogonal tetrazine ligation in living cells.
Fig. 2: Early-stage functionalization of a peptide with a photocaged dihydrotetrazine group.
Fig. 3: Single-cell remodelling of HeLa S3 cell membranes by photoactivation of tetrazine ligation.
Fig. 4: Light-activated tetrazine prodrug therapy in Hep 3B cancer cells.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Saxon, E. & Bertozzi, C. R. Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Prescher, J. A., Dube, D. H. & Bertozzi, C. R. Chemical remodelling of cell surfaces in living animals. Nature 430, 873–877 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Devaraj, N. K. The future of bioorthogonal chemistry. ACS Cent. Sci. 4, 952–959 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blackman, M. L., Royzen, M. & Fox, J. M. Rapid tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels–Alder reactivity. J. Am. Chem. Soc. 130, 13518–13519 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Devaraj, N. K., Weissleder, R. & Hilderbrand, S. A. Tetrazine-based cycloadditions: application to pretargeted live cell imaging. Bioconjug. Chem. 19, 2297–2299 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oliveira, B. L., Guo, Z. & Bernardes, G. J. L. Inverse electron demand Diels-Alder reactions in chemical biology. Chem. Soc. Rev. 46, 4895–4950 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Nguyen, S. S. & Prescher, J. A. Developing bioorthogonal probes to span a spectrum of reactivities. Nat. Rev. Chem. 4, 476–489 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Elliott, T. S. et al. Proteome labeling and protein identification in specific tissues and at specific developmental stages in an animal. Nat. Biotechnol. 32, 465–472 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dong, J. et al. Covalent chemistry on nanostructured substrates enables noninvasive quantification of gene rearrangements in circulating tumor cells. Sci. Adv. 5, eaav9186 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liang, D. et al. A real-time, click chemistry imaging approach reveals stimulus-specific subcellular locations of phospholipase D activity. Proc. Natl Acad. Sci. USA 116, 15453–15462 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Agarwal, P., Beahm, B. J., Shieh, P. & Bertozzi, C. R. Systemic fluorescence imaging of zebrafish glycans with bioorthogonal chemistry. Angew. Chem. Int. Ed. 54, 11504–11510 (2015).

    Article  CAS  Google Scholar 

  12. Carlson, J. C. T., Mikula, H. & Weissleder, R. Unraveling tetrazine-triggered bioorthogonal elimination enables chemical tools for ultrafast release and universal cleavage. J. Am. Chem. Soc. 140, 3603–3612 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Versteegen, R. M. et al. Click-to-release from trans-cyclooctenes: mechanistic insights and expansion of scope from established carbamate to remarkable ether cleavage. Angew. Chem. Int. Ed. 57, 10494–10499 (2018).

    Article  CAS  Google Scholar 

  14. Li, H., Conde, J., Guerreiro, A. & Bernardes, G. J. L. Tetrazine carbon nanotubes for pretargeted in vivo ‘click-to-release’ bioorthogonal tumour imaging. Angew. Chem. Int. Ed. 59, 16023–16032 (2020).

    Article  CAS  Google Scholar 

  15. Li, J., Jia, S. & Chen, P. R. Diels–Alder reaction-triggered bioorthogonal protein decaging in living cells. Nat. Chem. Biol. 10, 1003–1005 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Ji, X. et al. Click and release: bioorthogonal approaches to ‘on-demand’ activation of prodrugs. Chem. Soc. Rev. 48, 1077–1094 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Czuban, M. et al. Bio-orthogonal chemistry and reloadable biomaterial enable local activation of antibiotic prodrugs and enhance treatments against Staphylococcus aureus infections. ACS Cent. Sci. 4, 1624–1632 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, K. et al. Click activated protodrugs against cancer increase the therapeutic potential of chemotherapy through local capture and activation. Chem. Sci. 12, 1259–1271 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patterson, G. H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1887 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Kumar, G. S. & Lin, Q. Light-triggered click chemistry. Chem. Rev. 121, 6991–7031 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Kumar, P., Jiang, T., Li, S., Zainul, O. & Laughlin, S. T. Caged cyclopropenes for controlling bioorthogonal reactivity. Org. Biomol. Chem. 16, 4081–4085 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Mayer, S. V., Murnauer, A., von Wrisberg, M. K., Jokisch, M. L. & Lang, K. Photo-induced and rapid labeling of tetrazine-bearing proteins via cyclopropenone-caged bicyclononynes. Angew. Chem. Int. Ed. 58, 15876–15882 (2019).

    Article  CAS  Google Scholar 

  23. Hockberger, P. E. A history of ultraviolet photobiology for humans, animals and microorganisms. Photochem. Photobiol. 76, 561–579 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Versteegen, R. M., Rossin, R., ten Hoeve, W., Janssen, H. M. & Robillard, M. S. Click to release: instantaneous doxorubicin elimination upon tetrazine ligation. Angew. Chem. Int. Ed. 52, 14112–14116 (2013).

    Article  CAS  Google Scholar 

  25. Zhang, H. et al. Rapid bioorthogonal chemistry turn-on through enzymatic or long wavelength photocatalytic activation of tetrazine ligation. J. Am. Chem. Soc. 138, 5978–5983 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. da Costa, S. R., da Costa Monteiro, M., da Silva Júnior, F. M. R. & Sandrini, J. Z. Methylene blue toxicity in zebrafish cell line is dependent on light exposure. Cell Biol. Int. 40, 895–905 (2016).

    Article  PubMed  CAS  Google Scholar 

  27. Hansen, M. J., Velema, W. A., Lerch, M. M., Szymanski, W. & Feringa, B. L. Wavelength-selective cleavage of photoprotecting groups: strategies and applications in dynamic systems. Chem. Soc. Rev. 44, 3358–3377 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Corrie, J. E. T., Barth, A., Munasinghe, V. R. N., Trentham, D. R. & Hutter, M. C. Photolytic cleavage of 1-(2-nitrophenyl)ethyl ethers involves two parallel pathways and product release is rate-limited by decomposition of a common hemiacetal intermediate. J. Am. Chem. Soc. 125, 8546–8554 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, Y. R. et al. New caged coumarin fluorophores with extraordinary uncaging cross sections suitable for biological imaging applications. J. Am. Chem. Soc. 126, 4653–4663 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. An, P., Lewandowski, T. M., Erbay, T. G., Liu, P. & Lin, Q. Sterically shielded, stabilized nitrile imine for rapid bioorthogonal protein labeling in live cells. J. Am. Chem. Soc. 140, 4860–4868 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walker, J. W., Reid, G. P., McCray, J. A. & Trentham, D. R. Photolabile 1-(2-nitrophenyl) ethyl phosphate esters of adenine nucleotide analogs. Synthesis and mechanism of photolysis. J. Am. Chem. Soc. 110, 7170–7177 (1988).

    Article  CAS  Google Scholar 

  32. Darko, A. et al. Conformationally strained trans-cyclooctene with improved stability and excellent reactivity in tetrazine ligation. Chem. Sci. 5, 3370–3776 (2014).

    Article  CAS  Google Scholar 

  33. Slanina, T. et al. In search of the perfect photocage: structure–reactivity relationships in meso-methyl BODIPY photoremovable protecting groups. J. Am. Chem. Soc. 139, 15168–15175 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Li, Z. et al. Tetrazine-trans-cyclooctene ligation for the rapid construction of 18F labeled probes. Chem. Commun. 46, 8043–8045 (2010).

    Article  CAS  Google Scholar 

  35. Selvaraj, R. et al. Tetrazine-trans-cyclooctene ligation for the rapid construction of integrin αvβ3 targeted PET tracer based on a cyclic RGD peptide. Bioorg. Med. Chem. Lett. 21, 5011–5014 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pagel, M. Inverse electron demand Diels-Alder (IEDDA) reactions in peptide chemistry. J. Pept. Sci. 25, e3141 (2019).

    Article  PubMed  CAS  Google Scholar 

  37. Jin, C. et al. Phosphorylated lipid-conjugated oligonucleotide selectively anchors on cell membranes with high alkaline phosphatase expression. Nat. Commun. 10, 2704 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Huang, M. L., Smith, R. A., Trieger, G. W. & Godula, K. Glycocalyx remodeling with proteoglycan mimetics promotes neural specification in embryonic stem cells. J. Am. Chem. Soc. 136, 10565–10568 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Trigo, F. F., Corrie, J. E. T. & Ogden, D. Laser photolysis of caged compounds at 405 nm: photochemical advantages, localisation, phototoxicity and methods for calibration. J. Neurosci. Methods 180, 9–21 (2009).

    Article  PubMed  Google Scholar 

  40. Willis, J. C. W. & Chin, J. W. Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs. Nat. Chem. 10, 831–837 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tamura, T. et al. Organelle membrane-specific chemical labeling and dynamic imaging in living cells. Nat. Chem. Biol. 16, 1361–1367 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Jewett, J. C. & Bertozzi, C. R. Synthesis of a fluorogenic cyclooctyne activated by Cu-free click chemistry. Org. Lett. 13, 5937–5939 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kwiatkowski, S. et al. Photodynamic therapy—mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 106, 1098–1107 (2013).

    Article  CAS  Google Scholar 

  44. Cao, Z. et al. pH- and enzyme-triggered drug release as an important process in the design of anti-tumor drug delivery systems. Biomed. Pharmacother. 118, 109340 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Li, J. et al. Palladium-triggered deprotection chemistry for protein activation in living cells. Nat. Chem. 6, 352–361 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the National Institutes of Health (DP2DK111801, R01GM123285, R35GM141939 and T32CA009523). We thank W. Xiong and C. Wang for their assistance in measuring the emission spectra of the LED lights. We thank A. Winter and E. Gehrmann for their assistance with the synthesis of BODIPY photocaged dihydrotetrazine. We thank I. Budin and G. Riddihough for providing helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

L.L. and N.K.D. conceived the project. L.L. designed and performed the synthetic experiments. L.L. and D.Z. performed microscopy experiments. L.L. and M.J. performed cell experiments. L.L., D.Z., M.J. and N.K.D. analysed the data. L.L. and N.K.D. wrote the manuscript.

Corresponding author

Correspondence to Neal K. Devaraj.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Materials and methods, Supplementary text, Figs. 1–35, copies of mass and NMR spectra and references 46–51.

Reporting Summary

Supplementary Data 1

Cell membrane labelling.

Supplementary Data 2

Spatiotemporal cell membrane labelling.

Supplementary Data 3

Light-activated drug delivery by 1a.

Source data

Source Data Fig. 4

Light-activated drug delivery by 1c.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhang, D., Johnson, M. et al. Light-activated tetrazines enable precision live-cell bioorthogonal chemistry. Nat. Chem. 14, 1078–1085 (2022). https://doi.org/10.1038/s41557-022-00963-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-00963-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing