Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An enzymatic platform for the asymmetric amination of primary, secondary and tertiary C(sp3)–H bonds

Abstract

The ability to selectively functionalize ubiquitous C–H bonds streamlines the construction of complex molecular architectures from easily available precursors. Here we report enzyme catalysts derived from a cytochrome P450 that use a nitrene transfer mechanism for the enantioselective amination of primary, secondary and tertiary C(sp3)–H bonds. These fully genetically encoded enzymes are produced and function in bacteria, where they can be optimized by directed evolution for a broad spectrum of enantioselective C(sp3)–H amination reactions. These catalysts can aminate a variety of benzylic, allylic and aliphatic C–H bonds in excellent enantioselectivity with access to either antipode of product. Enantioselective amination of primary C(sp3)–H bonds in substrates that bear geminal dimethyl substituents furnished chiral amines that feature a quaternary stereocentre. Moreover, these enzymes enabled the enantioconvergent transformation of racemic substrates that possess a tertiary C(sp3)–H bond to afford products that bear a tetrasubstituted stereocentre, a process that has eluded small-molecule catalysts. Further engineering allowed for the enantioselective construction of methyl–ethyl stereocentres, which is notoriously challenging in asymmetric catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The three major types of asymmetric C(sp3)–H functionalization and our envisioned biocatalytic C(sp3)–H amination.
Fig. 2: Enantioselective amination of secondary C(sp3)–H bonds.
Fig. 3: Amination of unactivated secondary C(sp3)–H bonds.
Fig. 4: Engineered P411Diane variants for the enantioselective amination of primary and tertiary C(sp3)–H bonds.
Fig. 5: Mechanistic insight.
Fig. 6: Free energy profile of the iron porphyrin-catalysed C(sp3)–H amination.

Similar content being viewed by others

Data availability

All data necessary to support the paper’s conclusions are available in the main text and the Supplementary Information. Solid-state structures of 2a, 4a, 5a and 5f are available free of charge from the Cambridge Crystallographic Data Centre under reference nos CCDC 1905551, 1905553, 1905552 and 1905554. Plasmids encoding the enzymes reported in this study are available for research purposes from F.H.A. under a material transfer agreement with the California Institute of Technology.

References

  1. Saint-Denis, T. G., Zhu, R.-Y., Chen, G., Wu, Q.-F. & Yu, J.-Q. Enantioselective C(sp 3)‒H bond activation by chiral transition metal catalysts. Science 359, eaao4798 (2018).

    PubMed  PubMed Central  Google Scholar 

  2. Gutekunst, W. R. & Baran, P. S. C–H functionalization logic in total synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011).

    CAS  PubMed  Google Scholar 

  3. Hartwig, J. F. & Larsen, M. A. Undirected, homogeneous C–H bond functionalization: challenges and opportunities. ACS Cent. Sci. 2, 281–292 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lu, H. & Zhang, X. P. Catalytic C–H functionalization by metalloporphyrins: recent developments and future directions. Chem. Soc. Rev. 40, 1899–1909 (2011).

    CAS  PubMed  Google Scholar 

  5. Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).

    PubMed Central  Google Scholar 

  6. Smalley, A. P., Cuthbertson, J. D. & Gaunt, M. J. Palladium-catalyzed enantioselective C–H activation of aliphatic amines using chiral anionic binol-phosphoric acid ligands. J. Am. Chem. Soc. 139, 1412–1415 (2017).

    CAS  PubMed  Google Scholar 

  7. Quasdorf, K. W. & Overman, L. E. Catalytic enantioselective synthesis of quaternary carbon stereocentres. Nature 516, 181–191 (2014).

    PubMed Central  Google Scholar 

  8. Bhat, V., Welin, E. R., Guo, X. & Stoltz, B. M. Advances in stereoconvergent catalysis from 2005 to 2015: transition-metal-mediated stereoablative reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Chem. Rev. 117, 4528–4561 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lewis, J. C., Coelho, P. S. & Arnold, F. H. Enzymatic functionalization of carbon–hydrogen bonds. Chem. Soc. Rev. 40, 2003–2021 (2011).

    CAS  PubMed  Google Scholar 

  10. Ortiz de Montellano, P. R. Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem. Rev. 110, 932–948 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fasan, R. Tuning P450 enzymes as oxidation catalysts. ACS Catal. 2, 647–666 (2012).

    CAS  Google Scholar 

  12. Coelho, P. S., Brustad, E. M., Kannan, A. & Arnold, F. H. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 339, 307–310 (2013).

    CAS  PubMed  Google Scholar 

  13. Kan, S. B. J., Lewis, R. D., Chen, K. & Arnold, F. H. Directed evolution of cytochrome c for carbon–silicon bond formation: bringing silicon to life. Science 354, 1048–1051 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Key, H. M., Dydio, P., Clark, D. S. & Hartwig, J. F. Abiological catalysis by artificial haem proteins containing noble metals in place of iron. Nature 534, 534–537 (2016).

    Google Scholar 

  15. Dydio, P., Key, H. M., Hayashi, H., Clark, D. S. & Hartwig, J. F. Chemoselective, enzymatic C–H bond amination catalyzed by a cytochrome P450 containing an Ir(Me)-PIX cofactor. J. Am. Chem. Soc. 139, 1750–1753 (2017).

    CAS  PubMed  Google Scholar 

  16. Brandenberg, O. F., Fasan, R. & Arnold, F. H. Exploiting and engineering hemoproteins for abiological carbene and nitrene transfer reactions. Curr. Opin. Biotechnol. 47, 102–111 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Singh, R., Bordeaux, M. & Fasan, R. P450-catalyzed intramolecular sp 3 C–H amination with arylsulfonyl azide substrates. ACS Catal. 4, 546–552 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, R. K. et al. Enzymatic assembly of carbon–carbon bonds via iron-catalysed sp 3 C–H functionalization. Nature 565, 67–72 (2019).

    CAS  PubMed  Google Scholar 

  19. McIntosh, J. A. et al. Enantioselective intramolecular C–H amination catalyzed by engineered cytochrome P450 enzymes in vitro and in vivo. Angew. Chem. Int. Ed. 52, 9309–9312 (2013).

    CAS  Google Scholar 

  20. Hyster, T. K., Farwell, C. C., Buller, A. R., McIntosh, J. A. & Arnold, F. H. Enzyme-controlled nitrogen-atom transfer enables regiodivergent C–H amination. J. Am. Chem. Soc. 136, 15505–15508 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Prier, C. K., Zhang, R. K., Buller, A. R., Brinkmann-Chen, S. & Arnold, F. H. Enantioselective, intermolecular benzylic C–H amination catalysed by an engineered iron–haem enzyme. Nat. Chem. 9, 629–634 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Kurokawa, T., Kim, M. & Du Bois, J. Synthesis of 1,3-diamines through rhodium-catalyzed C–H insertion. Angew. Chem. Int. Ed. 48, 2777–2779 (2009).

    CAS  Google Scholar 

  23. Lu, H., Jiang, H., Wojtas, L. & Zhang, X. P. Selective intramolecular C–H amination through the metalloradical activation of azides: synthesis of 1,3-diamines under neutral and nonoxidative conditions. Angew. Chem. Int. Ed. 49, 10192–10196 (2010).

    CAS  Google Scholar 

  24. Zalatan, D. N. & Du Bois, J. A chiral rhodium carboxamidate catalyst for enantioselective C–H amination. J. Am. Chem. Soc. 130, 9220–9221 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ichinose, M. et al. Enantioselective intramolecular benzylic C–H bond amination: efficient synthesis of optically active benzosultams. Angew. Chem. Int. Ed. 50, 9884–9887 (2011).

    CAS  Google Scholar 

  26. Roizen, J. L., Harvey, M. E. & Du Bois, J. Metal-catalyzed nitrogen-atom transfer methods for the oxidation of aliphatic C–H bonds. Acc. Chem. Res. 45, 911–922 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Paradine, S. M. & White, M. C. Iron-catalyzed intramolecular allylic C–H amination. J. Am. Chem. Soc. 134, 2036–2039 (2012).

    CAS  PubMed  Google Scholar 

  28. Paradine, S. M. et al. A manganese catalyst for highly reactive yet chemoselective intramolecular C(sp 3)–H amination. Nat. Chem. 7, 987–994 (2015).

    PubMed Central  Google Scholar 

  29. Clark, J. R., Feng, K., Sookezian, A. & White, M. C. Manganese-catalysed benzylic C(sp 3)–H amination for late-stage functionalization. Nat. Chem. 10, 583–591 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, C. et al. Catalytic radical process for enantioselective amination of C(sp 3)−H bonds. Angew. Chem. Int. Ed. 57, 16837–16841 (2018).

    CAS  Google Scholar 

  31. Lu, H., Lang, K., Jiang, H., Wojtas, L. & Zhang, X. P. Intramolecular 1,5-C(sp 3)–H radical amination via Co(ii)-based metalloradical catalysis for five-membered cyclic sulfamides. Chem. Sci. 7, 6934–6939 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Capdevila, J. H. et al. The highly stereoselective oxidation of polyunsaturated fatty acids by cytochrome P450BM-3. J. Biol. Chem. 271, 22663–22671 (1996).

    CAS  PubMed  Google Scholar 

  33. Chen, K., Huang, X., Kan, S. B. J., Zhang, R. K. & Arnold, F. H. Enzymatic construction of highly strained carbocycles. Science 360, 71–75 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nagib, D. A. Catalytic desymmetrization by C–H functionalization as a solution to the chiral methyl problem. Angew. Chem. Int. Ed. 56, 7354–7356 (2017).

    CAS  Google Scholar 

  35. Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. Science 351, 681–684 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wendlandt, A. E., Vangal, P. & Jacobsen, E. N. Quaternary stereocentres via an enantioconvergent catalytic SN1 reaction. Nature 556, 447–451 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, X. et al. An enantioconvergent halogenophilic nucleophilic substitution (SN2X) reaction. Science 363, 400–404 (2019).

    CAS  PubMed  Google Scholar 

  38. Hennessy, E. T., Liu, R. Y., Iovan, D. A., Duncan, R. A. & Betley, T. A. Iron-mediated intermolecular N-group transfer chemistry with olefinic substrates. Chem. Sci. 5, 1526–1532 (2014).

    CAS  Google Scholar 

  39. Singh, R., Kolev, J. N., Sutera, P. A. & Fasan, R. Enzymatic C(sp 3)–H amination: P450-catalyzed conversion of carbonazidates into oxazolidinones. ACS Catal. 5, 1685–1691 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Fandrick, K. R. et al. A general copper–BINAP-catalyzed asymmetric propargylation of ketones with propargyl boronates. J. Am. Chem. Soc. 133, 10332–10335 (2011).

    CAS  PubMed  Google Scholar 

  41. Yang, Y., Shi, S.-L., Niu, D., Liu, P. & Buchwald, S. L. Catalytic asymmetric hydroamination of unactivated internal olefins to aliphatic amines. Science 349, 62–66 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jacobs, B. P., Wolczanski, P. T., Jiang, Q., Cundari, T. R. & MacMillan, S. N. Rare examples of Fe(iv) alkyl-imide migratory insertions: impact of Fe–C covalency in (Me2IPr)Fe(═NAd)R2 (R = neoPe, 1-nor). J. Am. Chem. Soc. 139, 12145–12148 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF (grant nos MCB-1513007 for F.H.A. and CHE-1654122 for P.L.). Y.Y. thanks the National Institutes of Health for a postdoctoral fellowship (grant no. 1F32GM133126-01). Calculations were performed at the Center for Research Computing at the University of Pittsburgh. We thank R. K. Zhang, K. Chen, D. C. Miller, D. K. Romney (Caltech) and Y. Wang (University of Pittsburgh) for helpful discussions and comments on the manuscript, L. Henling for X-ray diffraction analysis and S. Virgil for assistance with chiral supercritical fluid chromatography analysis.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. designed the overall research with F.H.A. providing guidance. Y.Y. and I.C. designed and performed the initial screening of haem proteins and directed evolution experiments. Y.Y. designed and performed the substrate scope study and mechanistic study. X.Q. carried out the computational studies with P.L. providing guidance. Y.Y. and F.H.A. wrote the manuscript with the input of all other authors.

Corresponding authors

Correspondence to Peng Liu or Frances H. Arnold.

Ethics declarations

Competing interests

A provisional patent application (inventors Y.Y. and I.C.) has been filed through the California Institute of Technology. The provisional patent covers the development and application of engineered cytochromes P450 for the synthesis of chiral diamine derivatives by C–H amination.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information.

NMR spectra

1H, 13C and 19F NMR spectra.

X-ray crystal structure of 2a

Crystallographic data for compound 2a.

X-ray crystal structure of 4a

Crystallographic data for compound 4a.

X-ray crystal structure of 5a

Crystallographic data for compound 5a.

X-ray crystal structure of 5f

Crystallographic data for compound 5f.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Cho, I., Qi, X. et al. An enzymatic platform for the asymmetric amination of primary, secondary and tertiary C(sp3)–H bonds. Nat. Chem. 11, 987–993 (2019). https://doi.org/10.1038/s41557-019-0343-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-019-0343-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing