Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The star-forming complex LMC-N79 as a future rival to 30 Doradus

Abstract

Within the early Universe, ‘extreme’ star formation may have been the norm rather than the exception1,2. Super star clusters (with masses greater than 105 solar masses) are thought to be the modern-day analogues of globular clusters, relics of a cosmic time (redshift z 2) when the Universe was filled with vigorously star-forming systems3. The giant H ii region 30 Doradus in the Large Magellanic Cloud is often regarded as a benchmark for studies of extreme star formation4. Here, we report the discovery of a massive embedded star-forming complex spanning about 500 pc in the unexplored southwest region of the Large Magellanic Cloud, which manifests itself as a younger, embedded twin of 30 Doradus. Previously known as N79, this region has a star-formation efficiency greater than that of 30 Doradus, by a factor of about 2, as measured over the past ~0.5 Myr. Moreover, at the heart of N79 lies the most luminous infrared compact source discovered with large-scale infrared surveys of the Large Magellanic Cloud and Milky Way, possibly a precursor to the central super star cluster of 30 Doradus, R136. The discovery of a nearby candidate super star cluster may provide invaluable information to understand how extreme star formation proceeds in the current and high-redshift Universe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Large-scale structure of the Large Magellanic Cloud.
Fig. 2: Dissecting N79.
Fig. 3: The most luminous component of N79, H72.97-69.39.
Fig. 4: Star-formation properties of N79 versus N11 and 30 Doradus.

Similar content being viewed by others

References

  1. Barger, A. J. et al. Submillimetre-wavelength detection of dusty star-forming galaxies at high redshift. Nature 394, 248–251 (1998).

    Article  ADS  Google Scholar 

  2. Turner, J. L. Extreme star formation. Astrophys. Space Sci. Proc. 10, 215–246 (2009).

    Article  ADS  Google Scholar 

  3. Kruijssen, J. M. D. Globular clusters as the relics of regular star formation in ‘normal’ high-redshift galaxies. Mon. Not. R. Astron. Soc. 454, 1658–1686 (2015).

    Article  ADS  Google Scholar 

  4. Walborn, N. R. in The Magellanic Clouds, IAU Symp. Vol. 148 (eds. Haynes, R. & Milne, D.) 145 (1991).

  5. de Vaucouleurs, G. & Freeman, K. C. Structure and dynamics of barred spiral galaxies, in particular of the Magellanic type. Vistas Astron. 14, 163–294 (1972).

    Article  ADS  Google Scholar 

  6. Staveley-Smith, L., Kim, S., Calabretta, M. R., Haynes, R. F. & Kesteven, M. J. A new look at the large-scale Hi structure of the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 339, 87–104 (2003).

    Article  ADS  Google Scholar 

  7. Bekki, K. & Chiba, M. Dynamical influences of the last Magellanic interaction on the Magellanic Clouds. Publ. Astron. Soc. Aust. 24, 21–29 (2007).

    Article  ADS  Google Scholar 

  8. de Boer, K. S., Braun, J. M., Vallenari, A. & Mebold, U. Bow-shock induced star formation in the LMC? Astron. Astrophys. 329, L49–L52 (1998).

    ADS  Google Scholar 

  9. Murray, N. Star formation efficiencies and lifetimes of giant molecular clouds in the Milky Way. Astrophys. J. 729, 133 (2011).

    Article  ADS  Google Scholar 

  10. Ochsendorf, B. B., Meixner, M., Chastenet, J., Tielens, A. G. G. M. & Roman-Duval, J. The location, clustering, and propagation of massive star formation in giant molecular clouds. Astrophys. J. 832, 43 (2016).

    Article  ADS  Google Scholar 

  11. Henize, K. G. Catalogues of Hα-emission stars and nebulae in the Magellanic Clouds. Astrophys. J. Suppl. Ser. 2, 315 (1956).

    Article  ADS  Google Scholar 

  12. Madden, S. C., Poglitsch, A., Geis, N., Stacey, G. J. & Townes, C. H. [C ii] 158 micron observations of IC 10: evidence for hidden molecular hydrogen in irregular galaxies. Astrophys. J. 483, 200–209 (1997).

    Article  ADS  Google Scholar 

  13. Jameson, K. E. et al. The relationship between molecular gas, H i, and star formation in the low-mass, low-metallicity Magellanic Clouds. Astrophys. J. 825, 12 (2016).

    Article  ADS  Google Scholar 

  14. Seale, J. P. et al. Herschel Key Program HERITAGE: a far-infrared source catalog for the Magellanic Clouds. Astron. J. 148, 124 (2014).

    Article  ADS  Google Scholar 

  15. Mottram, J. C. et al. The RMS Survey: the luminosity functions and timescales of massive young stellar objects and compact H ii regions. Astrophys. J. Lett. 730, L33 (2011).

    Article  ADS  Google Scholar 

  16. Zinnecker, H. & Yorke, H. W. Toward understanding massive star formation. Annu. Rev. Astron. Astrophys. 45, 481–563 (2007).

    Article  ADS  Google Scholar 

  17. Walborn, N. R. & Parker, J. W. Two-stage starbursts in the Large Magellanic Cloud—N11 as a once and future 30 Doradus. Astrophys. J. Lett. 399, L87–L89 (1992).

    Article  ADS  Google Scholar 

  18. Cignoni, M. et al. Hubble Tarantula Treasury Project. II. The star-formation history of the starburst region NGC 2070 in 30 Doradus. Astrophys. J. 811, 76 (2015).

    Article  ADS  Google Scholar 

  19. Fukui, Y. et al. Molecular and atomic gas in the Large Magellanic Cloud. II. Three-dimensional correlation between CO and H i. Astrophys. J. 705, 144–155 (2009).

    Article  ADS  Google Scholar 

  20. Malumuth, E. M. & Heap, S. R. UBV stellar photometry of the 30 Doradus region of the Large Magellanic Cloud with the Hubble Space Telescope. Astron. J. 107, 1054–1066 (1994).

    Article  ADS  Google Scholar 

  21. Lee, E. J., Miville-Deschênes, M.-A. & Murray, N. W. Observational evidence of dynamic star formation rate in Milky Way giant molecular clouds. Astrophys. J. 833, 229 (2016).

    Article  ADS  Google Scholar 

  22. Vutisalchavakul, N., Evans, N. J. II & Heyer, M. Star formation relations in the Milky Way. Astrophys. J. 831, 73 (2016).

    Article  ADS  Google Scholar 

  23. Ochsendorf, B. B., Meixner, M., Roman-Duval, J., Rahman, M. & Evans, N. J. II what sets the massive star formation rates and efficiencies of giant molecular clouds? Astrophys. J. 841, 109 (2017).

    Article  ADS  Google Scholar 

  24. Turner, J. L. et al. Highly efficient star formation in NGC 5253 possibly from stream-fed accretion. Nature 519, 331–333 (2015).

    Article  ADS  Google Scholar 

  25. Ginsburg, A. et al. Toward gas exhaustion in the W51 high-mass protoclusters. Astron. Astrophys. 595, A27 (2016).

    Article  Google Scholar 

  26. Crowther, P. A. et al. The R136 star cluster dissected with Hubble Space Telescope/STIS. I. Far-ultraviolet spectroscopic census and the origin of He ii λ1640 in young star clusters. Mon. Not. R. Astron. Soc. 458, 624–659 (2016).

    Article  ADS  Google Scholar 

  27. Figer, D. F. et al. Hubble Space Telescope/NICMOS observations of massive stellar clusters near the Galactic Center. Astrophys. J. 525, 750–758 (1999).

    Article  ADS  Google Scholar 

  28. Krumholz, M. R. in Very Massive Stars in the Local Universe. Astrophysics and Space Science Library Vol. 412 (ed. Vink, J. S.) 43 (2015).

  29. Athanassoula, E. The existence and shapes of dust lanes in galactic bars. Mon. Not. R. Astron. Soc. 259, 345–364 (1992).

    Article  ADS  Google Scholar 

  30. Johnson, L. C. et al. Panchromatic Hubble Andromeda Treasury. XVIII. The high-mass truncation of the star cluster mass function. Astrophys. J. 839, 78 (2017).

    Article  ADS  Google Scholar 

  31. Fukui, Y. et al. Formation of the young massive cluster R136 triggered by tidally-driven colliding H i flows. Publ. Astron. Soc. Jpn. 69, L5 (2017).

    Article  ADS  Google Scholar 

  32. Kim, S. et al. A neutral hydrogen survey of the Large Magellanic Cloud: aperture synthesis and multibeam data combined. Astrophys. J. Suppl. Ser. 148, 473–486 (2003).

    Article  ADS  Google Scholar 

  33. Wong, T. et al. The Magellanic Mopra Assessment (MAGMA). I. The molecular cloud population of the Large Magellanic Cloud. Astrophys. J. Suppl. Ser. 197, 16 (2011).

    Article  ADS  Google Scholar 

  34. Gaustad, J. E., McCullough, P. R., Rosing, W. & Van Buren, D. A robotic wide-angle Hα Survey of the Southern Sky. Publ. Astron. Soc. Pac. 113, 1326–1348 (2001).

    Article  ADS  Google Scholar 

  35. Smith, R. C., MCELS Team. The UM/CTIO Magellanic Cloud emission-line survey. Publ. Astron. Soc. Aust. 15, 163–64 (1998).

    Article  ADS  Google Scholar 

  36. Meixner, M. et al. Spitzer survey of the Large Magellanic Cloud: Surveying the Agents of a Galaxy’s Evolution (SAGE). I. Overview and initial results. Astron. J. 132, 2268–2288 (2006).

    Article  ADS  Google Scholar 

  37. Meixner, M. et al. The HERSCHEL Inventory of the Agents of Galaxy Evolution in the Magellanic Clouds, a Herschel Open Time Key Program. Astron. J. 146, 62 (2013).

    Article  ADS  Google Scholar 

  38. Whitney, B. A. et al. Spitzer Sage Survey of the Large Magellanic Cloud. III. Star formation and ~1000 new candidate young stellar objects. Astron. J. 136, 18–43 (2008).

    Article  ADS  Google Scholar 

  39. Gruendl, R. A. & Chu, Y.-H. High- and intermediate-mass young stellar objects in the Large Magellanic Cloud. Astrophys. J. Suppl. Ser. 184, 172–197 (2009).

    Article  ADS  Google Scholar 

  40. Seale, J. P. et al. The evolution of massive young stellar objects in the Large Magellanic Cloud. I. Identification and spectral classification. Astrophys. J. 699, 150–167 (2009).

    Article  ADS  Google Scholar 

  41. Jones, O. C. et al. The SAGE-Spec Spitzer Legacy program: the life-cycle of dust and gas in the Large Magellanic Cloud. Point source classification III. Mon. Not. R. Astron. Soc 470, 3250–3282 (2017).

    Article  ADS  Google Scholar 

  42. Robitaille, T. P., Whitney, B. A., Indebetouw, R., Wood, K. & Denzmore, P. Interpreting spectral energy distributions from young stellar objects. I. A grid of 200,000 YSO model SEDs. Astrophys. J. Suppl. Ser. 167, 256–285 (2006).

    Article  ADS  Google Scholar 

  43. Heiderman, A. & Evans, N. J. II The Gould Belt ‘MISFITS’ Survey: the real solar neighborhood protostars. Astrophys. J. 806, 231 (2015).

    Article  ADS  Google Scholar 

  44. Heyer, M. et al. The rate and latency of star formation in dense, massive clumps in the Milky Way. Astron. Astrophys. 588, A29 (2016).

    Article  Google Scholar 

  45. Dunham, M. M. et al. Young stellar objects in the Gould Belt. Astrophys. J. Suppl. Ser. 220, 11 (2015).

    Article  ADS  Google Scholar 

  46. Battersby, C., Bally, J. & Svoboda, B. The lifetimes of phases in high-mass star-forming regions. Astrophys. J. 835, 263 (2017).

    Article  ADS  Google Scholar 

  47. Carlson, L. R. et al. A panchromatic view of NGC 602: time-resolved star formation with the Hubble and Spitzer Space Telescopes. Astrophys. J. 730, 78 (2011).

    Article  ADS  Google Scholar 

  48. Kato, D. et al. The IRSF Magellanic Clouds Point Source Catalog. Publ. Astron. Soc. Jpn 59, 615–641 (2007).

    Article  ADS  Google Scholar 

  49. Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).

    Article  ADS  Google Scholar 

  50. Sewiło, M. et al. The youngest massive protostars in the Large Magellanic Cloud. Astron. Astrophys. 518, L73 (2010).

    Article  ADS  Google Scholar 

  51. Gordon, K. D. et al. Dust and gas in the Magellanic Clouds from the HERITAGE Herschel Key Project. I. Dust properties and insights into the origin of the submillimeter excess emission. Astrophys. J. 797, 85 (2014).

    Article  ADS  Google Scholar 

  52. Spitzer, L. Physical Processes in the Interstellar Medium (Wiley, New York, 1978).

    Google Scholar 

  53. Marx-Zimmer, M. et al. A study of the cool gas in the Large Magellanic Cloud. I. Properties of the cool atomic phase — a third H i absorption survey. Astron. Astrophys. 354, 787–801 (2000).

    ADS  Google Scholar 

  54. Dickey, J. M., Mebold, U., Stanimirovic, S. & Staveley-Smith, L. Cold atomic gas in the Small Magellanic Cloud. Astrophys. J. 536, 756–772 (2000).

    Article  ADS  Google Scholar 

  55. Lee, M.-Y., Stanimirović, S., Murray, C. E., Heiles, C. & Miller, J. Cold and warm atomic gas around the Perseus molecular cloud. II. The impact of high optical depth on the Hi column density distribution and its implication for the Hi-to-H2 transition. Astrophys. J. 809, 56 (2015).

    Article  ADS  Google Scholar 

  56. Bolatto, A. D., Wolfire, M. & Leroy, A. K. The CO-to-H2 conversion factor. Annu. Rev. Astron. Astrophys. 51, 207–268 (2013).

    Article  ADS  Google Scholar 

  57. Roman-Duval, J. et al. Dust and gas in the Magellanic Clouds from the HERITAGE Herschel Key Project. II. Gas-to-dust ratio variations across interstellar medium phases. Astrophys. J. 797, 86 (2014).

    Article  ADS  Google Scholar 

  58. Paradis, D. et al. Spitzer characterization of dust in the ionized medium of the Large Magellanic Cloud. Astrophys. J. 735, 6 (2011).

    Article  ADS  Google Scholar 

  59. Shaver, P. A., McGee, R. X., Newton, L. M., Danks, A. C. & Pottasch, S. R. The galactic abundance gradient. Mon. Not. R. Astron. Soc. 204, 53–112 (1983).

    Article  ADS  Google Scholar 

  60. Dickinson, C., Davies, R. D. & Davis, R. J. Towards a free–free template for CMB foregrounds. Mon. Not. R. Astron. Soc. 341, 369–384 (2003).

    Article  ADS  Google Scholar 

  61. Bertoldi, F. & McKee, C. F. Pressure-confined clumps in magnetized molecular clouds. Astrophys. J. 395, 140–157 (1992).

    Article  ADS  Google Scholar 

  62. Kauffmann, J., Pillai, T. & Goldsmith, P. F. Low virial parameters in molecular clouds: implications for high-mass star formation and magnetic fields. Astrophys. J. 779, 185 (2013).

    Article  ADS  Google Scholar 

  63. Rosado, M. et al. Formation of the nebular complex N11 in the Large Magellanic Cloud. Astron. Astrophys. 308, 588–600 (1996).

    ADS  Google Scholar 

  64. Nayak, O. et al. Studying relation between star formation and molecular clumps on subparsec scales in 30 Doradus. Preprint at https://arxiv.org/abs/1608.05451 (2016).

  65. Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    Article  ADS  Google Scholar 

  66. Vaidya, K., Chu, Y.-H., Gruendl, R. A., Chen, C.-H. R. & Looney, L. W. A Hubble Space Telescope view of the interstellar environments of young stellar objects in the Large Magellanic Cloud. Astrophys. J. 707, 1417–1426 (2009).

    Article  ADS  Google Scholar 

  67. Stephens, I. W. et al. Stellar clusterings around ‘isolated’ massive YSOs in the LMC. Astrophys. J. 834, 94 (2017).

    Article  ADS  Google Scholar 

  68. Vacca, W. D., Garmany, C. D. & Shull, J. M. The Lyman-continuum fluxes and stellar parameters of O and early B-type stars. Astrophys. J. 460, 914 (1996).

    Article  ADS  Google Scholar 

  69. O’dell, C. R., Valk, J. H., Wen, Z. & Meyer, D. M. Identification of velocity systems in the inner Orion Nebula. Astrophys. J. 403, 678–683 (1993).

    Article  ADS  Google Scholar 

  70. Simón-Díaz, S., Herrero, A. & Esteban, C. in Revista Mexicana de Astronomia y Astrofisica Conf. Series, Vol. 18 (eds Reyes-Ruiz, M. & Vázquez-Semadeni, E.) 123–125 (2003).

  71. Robitaille, T. P. in Massive Star Formation: Observations Confront Theory. Astronomical Society of the Pacific Conf. Series, Vol. 387 (eds Beuther, H., Linz, H. & Henning, T.) 290 (2008).

  72. Calzetti, D. et al. The calibration of mid-infrared star formation rate indicators. Astrophys. J. 666, 870–895 (2007).

    Article  ADS  Google Scholar 

  73. Krumholz, M. R. et al. in Protostars and Planets VI (eds Beuther, H. et al.) 243–266 (Univ. Arizona Press, Arizona, 2014).

  74. Kruijssen, J. M. D. & Longmore, S. N. An uncertainty principle for star formation: I. Why galactic star formation relations break down below a certain spatial scale. Mon. Not. R. Astron. Soc. 439, 3239–3252 (2014).

    Article  ADS  Google Scholar 

  75. Kennicutt, R. C. Jr., Bresolin, F., Bomans, D. J., Bothun, G. D. & Thompson, I. B. Large scale structure of the ionized gas in the Magellanic clouds. Astron. J. 109, 594–604 (1995).

    Article  ADS  Google Scholar 

  76. Krumholz, M. R. & McKee, C. F. A general theory of turbulence-regulated star formation, from spirals to ultraluminous infrared galaxies. Astrophys. J. 630, 250–268 (2005).

    Article  ADS  Google Scholar 

  77. Portegies Zwart, S. F., McMillan, S. L. W. & Gieles, M. Young massive star clusters. Annu. Rev. Astron. Astrophys. 48, 431–493 (2010).

    Article  ADS  Google Scholar 

  78. D’Ercole, A., Vesperini, E., D’Antona, F., McMillan, S. L. W. & Recchi, S. Formation and dynamical evolution of multiple stellar generations in globular clusters. Mon. Not. R. Astron. Soc. 391, 825–843 (2008).

    Article  ADS  Google Scholar 

  79. Bekki, K. Secondary star formation within massive star clusters: origin of multiple stellar populations in globular clusters. Mon. Not. R. Astron. Soc. 412, 2241–2259 (2011).

    Article  ADS  Google Scholar 

  80. Schaerer, D. & Charbonnel, C. A new perspective on globular clusters, their initial mass function and their contribution to the stellar halo and the cosmic reionization. Mon. Not. R. Astron. Soc. 413, 2297–2304 (2011).

    Article  ADS  Google Scholar 

  81. van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud proper motions. II. The Large Magellanic Cloud rotation field in three dimensions. Astrophys. J. 781, 121 (2014).

    Article  ADS  Google Scholar 

  82. Lopez, L. A. et al. The role of stellar feedback in the dynamics of H ii regions. Astrophys. J. 795, 121 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

B.B.O. performed the analysis, coordinated collaboration and wrote the manuscript. O.N. helped in characterizing H72.97-69.39. M.M. and O.C.J. helped with the creation of the MYSO catalogue and estimates of source contamination. H.Z., J.B., R.I. and M.R. provided help with the interpretation of the results and implications.

Corresponding author

Correspondence to Bram B. Ochsendorf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochsendorf, B.B., Zinnecker, H., Nayak, O. et al. The star-forming complex LMC-N79 as a future rival to 30 Doradus. Nat Astron 1, 784–790 (2017). https://doi.org/10.1038/s41550-017-0268-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-017-0268-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing