Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Blocking then stinging as a case of two-step evolution of defensive cage architectures in herbivore-driven ecosystems

An Author Correction to this article was published on 20 March 2024

This article has been updated

Abstract

Dense branching and spines are common features of plant species in ecosystems with high mammalian herbivory pressure. While dense branching and spines can inhibit herbivory independently, when combined, they form a powerful defensive cage architecture. However, how cage architecture evolved under mammalian pressure has remained unexplored. Here we show how dense branching and spines emerged during the age of mammalian radiation in the Combretaceae family and diversified in herbivore-driven ecosystems in the tropics. Phylogenetic comparative methods revealed that modern plant architectural strategies defending against large mammals evolved via a stepwise process. First, dense branching emerged under intermediate herbivory pressure, followed by the acquisition of spines that supported higher speciation rates under high herbivory pressure. Our study highlights the adaptive value of dense branching as part of a herbivore defence strategy and identifies large mammal herbivory as a major selective force shaping the whole plant architecture of woody plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Traits studied and hypotheses tested.
Fig. 2: Global herbivore richness, herbivory regimes and their relationship with biome types.
Fig. 3: Plant defensive architectural traits in association with environmental factors, ancestral state and herbivory regime inferences.
Fig. 4: Speciation rates of species with dense architectures under herbivory regimes according to the best-fitting models in the MuSSE framework.
Fig. 5: Speciation rates of spiny species under herbivory regimes according to the best-fitting models in the MuSSE framework.
Fig. 6: Combretaceae architecture evolution under different herbivory regimes.
Fig. 7: Speciation rates of spiny species with dense architectures according to the best-fitting models in the MuSSE framework.

Similar content being viewed by others

Data availability

The descriptions data (cagey index and spines), the herbivory richness data and outputs for all analyses that support the findings of this study have been deposited in figshare (https://doi.org/10.6084/m9.figshare.24454609).

The additional datasets used in this study are GBIF datasets (GBIF.org, 27 October 2022, GBIF Occurrence Download: https://doi.org/10.15468/dl.7p2kpa) and data from the IUCN Red List Database (The IUCN Red List of Threatened Species v.2022-2; https://www.iucnredlist.org).

Code availability

The R code used for all analyses of this study have been deposited in figshare (https://doi.org/10.6084/m9.figshare.24454609).

Change history

References

  1. Lavorel, S., McIntyre, S., Landsberg, J. & Forbes, T. D. A. Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol. Evol. 12, 474–478 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Wigley, B. J. et al. A handbook for the standardised sampling of plant functional traits in disturbance-prone ecosystems, with a focus on open ecosystems. Aust. J. Bot. 68, 473–531 (2020).

    Article  Google Scholar 

  3. Warming, E. & Vahl, M. Oecology of Plants: An Introduction to the Study of Plant-Communities (Clarendon Press, 1909).

  4. Raunkiaer, C. The Life Forms of Plants and Statistical Plant Geography Being The Collected Papers of C. Raunkiaer (Clarendon Press, 1934).

  5. Klimešová, J. & Herben, T. The hidden half of the fine root differentiation in herbs: nonacquisitive belowground organs determine fine‐root traits. Oikos https://doi.org/10.1111/oik.08794 (2023).

  6. Jones, C. S. & Lord, E. M. The development of split axes in Ambrosia dumosa (Gray) Payne (Asteraceae). Bot. Gaz. 143, 446–453 (1982).

    Article  Google Scholar 

  7. Eggli, U. & Nyffeler, R. Living under temporarily arid conditions – succulence as an adaptive strategy. Bradleya 2009, 13–36 (2009).

    Article  Google Scholar 

  8. Arakaki, M. et al. Contemporaneous and recent radiations of the world’s major succulent plant lineages. Proc. Natl Acad. Sci. USA 108, 8379–8384 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hoffmann, W. A. et al. Ecological thresholds at the savanna–forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol. Lett. 15, 759–768 (2012).

    Article  PubMed  Google Scholar 

  10. Williams, R. J., Cook, G. D., Gill, A. M. & Moore, P. H. R. Fire regime, fire intensity and tree survival in a tropical savanna in northern Australia. Aust. J. Ecol. 24, 50–59 (1999).

    Article  Google Scholar 

  11. Lehmann, C. E. et al. Savanna vegetation-fire-climate relationships differ among continents. Science 343, 548–552 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Anest, A. et al. Evolving the structure: climatic and developmental constraints on the evolution of plant architecture. A case study in Euphorbia. New Phytol. 231, 1278–1295 (2021).

    Article  PubMed  Google Scholar 

  13. Jones, C. S. The effect of axis splitting on xylem pressure potentials and water movement in the desert shrub Ambrosia dumosa (Gray) Payne (Asteraceae). Bot. Gaz. 145, 125–131 (1984).

    Article  Google Scholar 

  14. Pausas, J. G. et al. Towards understanding resprouting at the global scale. New Phytol. 209, 945–954 (2016).

    Article  PubMed  Google Scholar 

  15. Pausas, J. G. & Keeley, J. E. Epicormic resprouting in fire-prone ecosystems. Trends Plant Sci. 22, 1008–1015 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Simon, M. F. et al. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc. Natl Acad. Sci. USA 106, 20359–20364 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoffman, C. et al. Numerical simulation of crown fire hazard immediately after bark beetle-caused mortality in lodgepole pine forests. For. Sci. 58, 178–188 (2012).

    Google Scholar 

  18. Bouchenak-Khelladi, Y., February, E. C., Verboom, G. A. & Boucher, F. C. C4 grass functional traits are correlated with biotic and abiotic gradients in an African savanna. Plant Ecol. 221, 241–254 (2020).

    Article  Google Scholar 

  19. Donoghue, M. J. & Sanderson, M. J. Confluence, synnovation, and depauperons in plant diversification. New Phytol. 207, 260–274 (2015).

    Article  PubMed  Google Scholar 

  20. Chomicki, G. Bringing Raunkiær with plant architecture: unveiling the climatic drivers of architectural evolution in Euphorbia. New Phytol. 231, 1278–1295 (2021).

    Article  Google Scholar 

  21. Wigley, B. J., Coetsee, C., Fritz, H. & Bond, W. J. Herbivores shape woody plant communities in the Kruger National Park: lessons from three long-term exclosures. Koedoe 56, 1–12 (2014).

    Article  Google Scholar 

  22. Charles-Dominique, T. et al. Spiny plants, mammal browsers, and the origin of African savannas. Proc. Natl Acad. Sci. USA 113, E5572–E5579 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bucher, E. H. Herbivory in arid and semi-arid regions of Argentina. Rev. Chil. Hist. Nat. 60, 265–273 (1987).

    Google Scholar 

  24. Burns, C. E., Collins, S. L. & Smith, M. D. Plant community response to loss of large herbivores: comparing consequences in a South African and a North American grassland. Biodivers. Conserv. 18, 2327–2342 (2009).

    Article  Google Scholar 

  25. Dantas, V. L. & Pausas, J. G. Megafauna biogeography explains plant functional trait variability in the tropics. Glob. Ecol. Biogeogr. 29, 1288–1298 (2020).

    Article  Google Scholar 

  26. Bell, D. T. in Plant-Animal Interactions in Mediterranean-Type Ecosystems (eds Arianoutsou, M. & Groves, R. H.) 63–70 (Springer, 1994).

  27. Hanley, M. E. Seedling herbivory, community composition and plant life history traits. Perspect. Plant Ecol. Evol. Syst. 1, 191–205 (1998).

    Article  Google Scholar 

  28. Ash, A. J. & McIvor, J. G. How season of grazing and herbivore selectivity influence monsoon tall‐grass communities of northern Australia. J. Veg. Sci. 9, 123–132 (1998).

    Article  Google Scholar 

  29. Hempson, G. P., Archibald, S. & Bond, W. J. A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350, 1056–1061 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Tomlinson, K. W. et al. Defence against vertebrate herbivores trades off into architectural and low nutrient strategies amongst savanna Fabaceae species. Oikos 125, 126–136 (2016).

    Article  CAS  Google Scholar 

  31. Bond, W. J. Large parts of the world are brown or black: a different view on the ‘Green World’ hypothesis. J. Veg. Sci. 16, 261–266 (2005).

    Google Scholar 

  32. Campagnolo, M. L., Libonati, R., Rodrigues, J. A. & Pereira, J. M. C. A comprehensive characterization of MODIS daily burned area mapping accuracy across fire sizes in tropical savannas. Remote Sens. Environ. 252, 112115 (2021).

    Article  Google Scholar 

  33. Pausas, J. G. Pyrogeography across the western Palaearctic: a diversity of fire regimes. Glob. Ecol. Biogeogr. 31, 1923–1932 (2022).

    Article  Google Scholar 

  34. Olff, H., Ritchie, M. E. & Prins, H. H. Global environmental controls of diversity in large herbivores. Nature 415, 901–904 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Berzaghi, F., Bretagnolle, F., Durand-Bessart, C. & Blake, S. Megaherbivores modify forest structure and increase carbon stocks through multiple pathways. Proc. Natl Acad. Sci. USA 120, e2201832120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bush, E. R. et al. Long-term collapse in fruit availability threatens Central African forest megafauna. Science 370, 1219–1222 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Archibald, S. & Bond, W. J. Growing tall vs growing wide: tree architecture and allometry of Acacia karroo in forest, savanna, and arid environments. Oikos 102, 3–14 (2003).

    Article  Google Scholar 

  38. Charles‐Dominique, T., Barczi, J. F., Le Roux, E. & Chamaillé‐Jammes, S. The architectural design of trees protects them against large herbivores. Funct. Ecol. 31, 1710–1717 (2017).

    Article  Google Scholar 

  39. Churski, M. et al. Herbivore‐induced branching increases sapling survival in temperate forest canopy gaps. J. Ecol. 110, 1390–1402 (2022).

    Article  Google Scholar 

  40. Staver, A. C., Abraham, J. O., Hempson, G. P., Karp, A. T. & Faith, J. T. The past, present, and future of herbivore impacts on savanna vegetation. J. Ecol. 109, 2804–2822 (2021).

    Article  Google Scholar 

  41. Edelin, C. The monopodial architecture: the case of some trees from tropical Asia. Research Pamphlet 105 (Forest Research Institute Malaysia, 1990).

  42. Barthélémy, D. & Caraglio, Y. Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann. Bot. 99, 375–407 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cooper, S. M., Owen-Smith, N. & Bryant, J. P. Foliage acceptability to browsing ruminants in relation to seasonal changes in the leaf chemistry of woody plants in a South African savanna. Oecologia 75, 336–342 (1988).

    Article  PubMed  Google Scholar 

  44. Armani, M., Charles-Dominique, T., Barton, K. E. & Tomlinson, K. W. Developmental constraints and resource environment shape early emergence and investment in spines in saplings. Ann. Bot. 124, 1133–1142 (2019).

    Article  PubMed Central  Google Scholar 

  45. Wang, X., Fan, H., Phoncharoen, W., Gélin, U. & Tomlinson, K. W. Leaf chemistry of architecturally defended plants responds more strongly to soil phosphorus variation than non‐architecturally defended ones. Physiol. Plant. 175, e13856 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Lefebvre, T., Charles-Dominique, T. & Tomlinson, K. W. Trunk spines of trees: a physical defence against bark removal and climbing by mammals? Ann. Bot. 129, 541–554 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Stace, C. A. & Alwan Al-Mayah, A. R. Combretaceae. Flora Neotrop. Monogr. 107, 1–369 (2010).

    Google Scholar 

  48. Maurin, O. et al. Drift in the tropics: phylogenetics and biogeographical patterns in Combretaceae. Glob. Ecol. Biogeogr. 32, 1790–1802 (2023).

    Article  Google Scholar 

  49. Stace, C. A. The significance of the leaf epidermis in the taxonomy of the Combretaceae. V. The genus Combretum subgenus Cacoucia in Africa. Bot. J. Linn. Soc. 81, 185–203 (1980).

    Article  Google Scholar 

  50. Stace, C. A. The significance of the leaf epidermis in the taxonomy of the Combretaceae: conclusions. Bot. J. Linn. Soc. 81, 327–339 (1980).

    Article  Google Scholar 

  51. Stace, C. A. Proposal to conserve Terminalia nom. cons. (Combretaceae) against an additional name, Bucida. Taxon 51, 193 (2002).

    Article  Google Scholar 

  52. Rabosky, D. L. & Goldberg, E. E. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 64, 340–355 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).

    Article  PubMed  Google Scholar 

  54. Bond, W. J. Open Ecosystems: Ecology and Evolution Beyond the Forest Edge (Oxford Univ. Press, 2019).

  55. Ordoñez, J. C. et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18, 137–149 (2009).

    Article  Google Scholar 

  56. Gowda, J. H. Spines of Acacia tortilis: what do they defend and how? Oikos 77, 279–284 (1996).

  57. Armani, M. et al. Structural defence is coupled with the leaf economic spectrum across saplings of spiny species. Oikos 129, 740–752 (2020).

    Article  Google Scholar 

  58. Zhang, X. et al. Rapid Eocene diversification of spiny plants in subtropical woodlands of central Tibet. Nat. Commun. 13, 3787 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fortelius, M. et al. Late Miocene and Pliocene large land mammals and climatic changes in Eurasia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 238, 219–227 (2006).

    Article  Google Scholar 

  60. Bell, A. D. & Bryan, A. Plant Form: An Illustrated Guide to Flowering Plant Morphology (Timber Press, 2008).

  61. Rowe, N. & Speck, T. Plant growth forms: an ecological and evolutionary perspective. New Phytol. 166, 61–72 (2005).

    Article  PubMed  Google Scholar 

  62. Lahaye, R., Civeyrel, L., Speck, T. & Rowe, N. P. Evolution of shrub‐like growth forms in the lianoid subfamily Secamonoideae (Apocynaceae s.l.) of Madagascar: phylogeny, biomechanics, and development. Am. J. Bot. 92, 1381–1396 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Rule, S. et al. The aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia. Science 335, 1483–1486 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Faurby, S. & Svenning, J. C. Historic and prehistoric human‐driven extinctions have reshaped global mammal diversity patterns. Divers. Distrib. 21, 1155–1166 (2015).

    Article  Google Scholar 

  66. Coverdale, T. C. Defence emergence during early ontogeny reveals important differences between spines, thorns and prickles. Ann. Bot. 124, iii–iv (2019).

    Article  Google Scholar 

  67. Mertens, D. et al. Plant defence to sequential attack is adapted to prevalent herbivores. Nat. Plants 7, 1347–1353 (2021).

    Article  PubMed  Google Scholar 

  68. Neilson, E. H., Goodger, J. Q., Woodrow, I. E. & Møller, B. L. Plant chemical defense: at what cost? Trends Plant Sci. 18, 250–258 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Barton, K. E. Tougher and thornier: general patterns in the induction of physical defence traits. Funct. Ecol. 30, 181–187 (2016).

    Article  Google Scholar 

  70. Harborne, J. B. in Plant Defenses Against Mammalian Herbivory (eds Palo, R. T. & Robbins, C. T.) Ch. 3 (CRC Press, 1991).

  71. Wigley, B. J., Fritz, H. & Coetsee, C. Defence strategies in African savanna trees. Oecologia 187, 797–809 (2018).

    Article  PubMed  Google Scholar 

  72. Wigley, B. J., Coetsee, C., Mawoyo, K. A. & Fritz, H. No evidence for the simultaneous induction of structural and chemical defences in spiny southern African savanna trees. Austral Ecol. 47, 1415–1426 (2022).

    Article  Google Scholar 

  73. Hunziker, P. et al. Herbivore feeding preference corroborates optimal defense theory for specialized metabolites within plants. Proc. Natl Acad. Sci. USA 118, e2111977118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gershenzon, J. & Ullah, C. Plants protect themselves from herbivores by optimizing the distribution of chemical defenses. Proc. Natl Acad. Sci. USA 119, e2120277119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gulewicz, P., Martinez-Villaluenga, C., Kasprowicz-Potocka, M. & Frias, J. Non-nutritive compounds in Fabaceae family seeds and the improvement of their nutritional quality by traditional processing – a review. Pol. J. Food Nutr. Sci. 64, 75–89 (2014).

    Article  CAS  Google Scholar 

  76. Johnson, M. G. et al. A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Syst. Biol. 68, 594–606 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Maurin, O. et al. A nuclear phylogenomic study of the angiosperm order Myrtales, exploring the potential and limitations of the universal Angiosperms353 probe set. Am. J. Bot. 108, 1087–1111 (2021).

    Article  PubMed  Google Scholar 

  78. GBIF Occurrence Download (GBIF.org, accessed 27 October 2022); https://doi.org/10.15468/dl.7p2kpa

  79. Hallé, F., Oldeman, R. A. & Tomlinson, P. B. Tropical Trees and Forests: An Architectural Analysis (Springer, 2012).

  80. R Core Team. R: A Language And Environment For Statistical Computing (R Foundation for Statistical Computing, 2022).

  81. The IUCN Red List of Threatened Species Version 2022-2 (IUCN, accessed 14 March 2021); https://www.iucnredlist.org

  82. Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 1.2.0 https://cran.r-project.org/package=rgbif (2019).

  83. Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).

    Article  Google Scholar 

  84. Kleyer, M. et al. Assessing species and community functional responses to environmental gradients: which multivariate methods? J. Veg. Sci. 23, 805–821 (2012).

    Article  Google Scholar 

  85. Ho, L. S. T. et al. phylolm: Phylogenetic Linear Regression. R package version 2.6.2 http://cran.r-project.org/web/packages/phylolm/index.html (2016).

  86. Harmon, L. et al. geiger: Analysis of Evolutionary Diversification. R package version 2.0.11 https://cran.r-project.org/package=geiger (2015).

  87. Miller, R. G. Jr. in Simultaneous Statistical Inference 37–108 (Springer Series in Statistics, 1981).

  88. Yandell, B. S. Practical Data Analysis for Designed Experiments Vol. 39 (CRC Press, 1997).

  89. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 2, 217–223 (2012).

    Article  Google Scholar 

  90. Matzke, N. J. BioGeoBEARS: bioGeography with Bayesian (and likelihood) evolutionary analysis in R scripts. R package version 0.2 http://phylo.wikidot.com/biogeobears (2013).

  91. Klaus, K. V. & Matzke, N. J. Statistical comparison of trait-dependent biogeographical models indicates that Podocarpaceae dispersal is influenced by both seed cone traits and geographical distance. Syst. Biol. 69, 61–75 (2020).

    Article  PubMed  Google Scholar 

  92. FitzJohn, R. G. Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3, 1084–1092 (2012).

    Article  Google Scholar 

  93. Smith, S. A. & O’Meara, B. C. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Nakov, T., Beaulieu, J. M. & Alverson, A. J. Diatoms diversify and turn over faster in freshwater than marine environments. Evolution 73, 2497–2511 (2019).

    Article  PubMed  Google Scholar 

  95. Beaulieu, J., O’Meara, B., Caetano, D., Boyko, J. & Vasconcelos, T. hisse: Hidden State Speciation and Extinction. R package version 2.1.11 https://cran.r-project.org/package=hisse (2023).

Download references

Acknowledgements

A.A. was sponsored by the 2018 CAS-TWAS President’s Fellowship for International Doctoral Students (20180479). The work was supported by a Yunnan Province 1000 Talents grant to K.W.T. (E0YN021). Calculations were performed using HPC resources from DNUM CCUB (Centre de Calcul de l’Université de Bourgogne).

Author information

Authors and Affiliations

Authors

Contributions

A.A., T.C.-D. and K.W.T. designed the project. A.A. conducted data collection and processing. A.A. and Y.B.-K. performed the analyses. A.A., Y.B.-K., T.C.-D., Y.C., F.F., G.P.H., O.M. and K.W.T. wrote the manuscript.

Corresponding authors

Correspondence to Artémis Anest or Kyle W. Tomlinson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Domingos Cardoso and Guillaume Chomicki for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–21, Figs. 1–14, Notes 1 and 2, Scripts 1–3 and References.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anest, A., Bouchenak-Khelladi, Y., Charles-Dominique, T. et al. Blocking then stinging as a case of two-step evolution of defensive cage architectures in herbivore-driven ecosystems. Nat. Plants 10, 587–597 (2024). https://doi.org/10.1038/s41477-024-01649-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-024-01649-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing