Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural insights into partner selection for MYB and bHLH transcription factor complexes

Abstract

MYB and basic helix–loop–helix (bHLH) transcription factors form complexes to regulate diverse metabolic and developmental processes in plants. However, the molecular mechanisms responsible for MYB–bHLH interaction and partner selection remain unclear. Here, we report the crystal structures of three MYB–bHLH complexes (WER–EGL3, CPC–EGL3 and MYB29–MYC3), uncovering two MYB–bHLH interaction modes. WER and CPC are R2R3- and R3-type MYBs, respectively, but interact with EGL3 through their N-terminal R3 domain in a similar mode. A single amino acid of CPC, Met49, is crucial for competition with WER to interact with EGL3. MYB29, a R2R3-type MYB transcription factor, interacts with MYC3 by its C-terminal MYC-interaction motif. The WER–EGL3 and MYB29–MYC3 binding modes are widely applied among MYB–bHLH complexes in Arabidopsis and evolve independently in plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Co-crystal structure of the WER–EGL3 complex.
Fig. 2: Co-crystal structure of the CPC–EGL3 complex.
Fig. 3: Functional importance of Met49 of CPC in competition with WER to bind to EGL3.
Fig. 4: Co-crystal structure of the MYB29–MYC3 complex.
Fig. 5: Two interaction modes of MYB–bHLH complexes.

Similar content being viewed by others

Data availability

Structural factors and coordinates have been deposited in the Protein Data Bank (PDB) under accession codes 7FDL, 7FDM, 7FDN and 7FDO for WER–EGL3, MYB29–MYC3, EGL3 and CPC–EGL3. And the structure of WER–DNA complex is available in the PDB by accession code 6KKS. Source data are provided with this paper.

References

  1. Feller, A., Machemer, K., Braun, E. L. & Grotewold, E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J. 66, 94–116 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Pireyre, M. & Burow, M. Regulation of MYB and bHLH transcription factors: a glance at the protein level. Mol. Plant 8, 378–388 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Dubos, C. et al. MYB transcription factors in Arabidopsis. Trends Plant Sci. 15, 573–581 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Heim, M. A. et al. The basic helix–loop–helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol. Biol. Evol. 20, 735–747 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Toledo-Ortiz, G., Huq, E. & Quail, P. H. The Arabidopsis basic/helix–loop–helix transcription factor family. Plant Cell 15, 1749–1770 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Millard, P. S., Weber, K., Kragelund, B. B. & Burow, M. Specificity of MYB interactions relies on motifs in ordered and disordered contexts. Nucleic Acids Res. 47, 9592–9608 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schiefelbein, J., Kwak, S. H., Wieckowski, Y., Barron, C. & Bruex, A. The gene regulatory network for root epidermal cell-type pattern formation in Arabidopsis. J. Exp. Bot. 60, 1515–1521 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Song, S. K. et al. Cell fate in the Arabidopsis root epidermis is determined by competition between WEREWOLF and CAPRICE. Plant Physiol. 157, 1196–1208 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kang, Y. H., Song, S. K., Schiefelbein, J. & Lee, M. M. Nuclear trapping controls the position-dependent localization of CAPRICE in the root epidermis of Arabidopsis. Plant Physiol. 163, 193–204 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tominaga-Wada, R. & Wada, T. Regulation of root hair cell differentiation by R3 MYB transcription factors in tomato and Arabidopsis. Front. Plant Sci. 5, 91 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Qi, T., Huang, H., Song, S. & Xie, D. Regulation of jasmonate-mediated stamen development and seed production by a bHLH-MYB complex in Arabidopsis. Plant Cell 27, 1620–1633 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fernandez-Calvo, P. et al. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23, 701–715 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, F. et al. Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature 525, 269–273 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schweizer, F. et al. Arabidopsis basic helix–loop–helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell 25, 3117–3132 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, B. et al. Structural insights into target DNA recognition by R2R3-MYB transcription factors. Nucleic Acids Res. 48, 460–471 (2020).

    CAS  PubMed  Google Scholar 

  16. Triezenberg, S. J. Structure and function of transcriptional activation domains. Curr. Opin. Genet. Dev. 5, 190–196 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Melcher, K. The strength of acidic activation domains correlates with their affinity for both transcriptional and non-transcriptional proteins. J. Mol. Biol. 301, 1097–1112 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Sun, X., Rikkerink, E. H., Jones, W. T. & Uversky, V. N. Multifarious roles of intrinsic disorder in proteins illustrate its broad impact on plant biology. Plant Cell 25, 38–55 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zimmermann, I. M., Heim, M. A., Weisshaar, B. & Uhrig, J. F. Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J. 40, 22–34 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Frerigmann, H., Berger, B. & Gigolashvili, T. bHLH05 is an interaction partner of MYB51 and a novel regulator of glucosinolate biosynthesis in Arabidopsis. Plant Physiol. 166, 349–369 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gigolashvili, T., Yatusevich, R., Berger, B., Muller, C. & Flugge, U. I. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J. 51, 247–261 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Hirai, M. Y. et al. Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc. Natl Acad. Sci. USA 104, 6478–6483 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sonderby, I. E. et al. A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. PLoS ONE 2, e1322 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Beekwilder, J. et al. The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PLoS ONE 3, e2068 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gigolashvili, T., Engqvist, M., Yatusevich, R., Muller, C. & Flugge, U. I. HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytol. 177, 627–642 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Malitsky, S. et al. The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Plant Physiol. 148, 2021–2049 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sonderby, I. E., Burow, M., Rowe, H. C., Kliebenstein, D. J. & Halkier, B. A. A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis. Plant Physiol. 153, 348–363 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li, Y. et al. Novel insights into the function of Arabidopsis R2R3-MYB transcription factors regulating aliphatic glucosinolate biosynthesis. Plant Cell Physiol. 54, 1335–1344 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Frerigmann, H. & Gigolashvili, T. MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Mol. Plant. 7, 814–828 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Celenza, J. L. et al. The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol. 137, 253–262 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gigolashvili, T. et al. The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J. 50, 886–901 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution–from diffraction images to an initial model in minutes. Acta Crystallogr. D 62, 859–866 (2006).

    Article  PubMed  Google Scholar 

  34. Potterton, E., Briggs, P., Turkenburg, M. & Dodson, E. A graphical user interface to the CCP4 program suite. Acta Crystallogr. D 59, 1131–1137 (2003).

    Article  PubMed  Google Scholar 

  35. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  36. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jerabek-Willemsen, M., Wienken, C. J., Braun, D., Baaske, P. & Duhr, S. Molecular interaction studies using microscale thermophoresis. Assay. Drug Dev. Technol. 9, 342–353 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2021.10.04.463034v1 (2022).

  40. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hori, K. et al. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat. Commun. 5, 3978 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Nishiyama, T. et al. The chara genome: secondary complexity and implications for plant terrestrialization. Cell 174, 448–464 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Wan, T. et al. A genome for gnetophytes and early evolution of seed plants. Nat. Plants 4, 82–89 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank W. Yang, H. Ma and X. Chen for a critical reading of the manuscript. We thank Y. Ding for help in BLI and ITC experiments. We thank the staff of beamlines BL17U1, BL18U1 and BL19U1 at the Shanghai Synchrotron Radiation Facility for assistance with data collection. We thank the staff members of the Microscale Thermophoresis System at the National Facility for Protein Science in Shanghai (NFPS), Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, China for providing technical support and assistance in data collection and analysis. We thank R. McKenzie from Liwen Bianji (Edanz) (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript. This work was supported by the National Natural Science Foundation of China (NSFC31930017) to A.D.

Author information

Authors and Affiliations

Authors

Contributions

A.D. conceived and designed the research. B.W., Q.L., Y.L., K.D., Z.W. and T.L. performed the experiments. Q.L., B.W., J.G. and C.-H.H. analysed the data. Q.L., B.W., W.-H.S., C.-H.H., J.G. and A.D. wrote the manuscript. All authors read, revised and approved the manuscript.

Corresponding authors

Correspondence to Chien-Hsun Huang, Jianhua Gan or Aiwu Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Shingo Nagano, Toshio Hakoshima and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Mapping the interaction domains of WER and EGL3.

a, The diagram of the full-length EGL3. b, The diagram of the full-length WER. c, Mapping the interacting domains of EGL3 and WER by Y2H assay. d, SEC experiment to confirm the interaction domains within EGL3 and WER. The WER-EGL3 complex is analyzed by SDS-PAGE, which was repeated independently twice with similar results.

Source data

Extended Data Fig. 2 The interacting interface of the MYB-bHLH complexes.

a, The electrostatic surface potentials of EGL3 in the WER-EGL3 complex. The EGL3-interacting residues of WER are highlighted as sticks. b, The electrostatic surface potentials of WER in the WER-EGL3 complex. EGL3 is shown as cartoon with the WER-interacting residues highlighted as sticks. c-d, The electrostatic surface potentials of EGL3 and CPC in the CPC-EGL3 complex, respectively. The EGL3-interacting residues of CPC are highlighted as sticks in (c). EGL3 is shown as cartoon with the CPC-interacting residues highlighted as sticks in (d). e, The electrostatic surface potentials of MYC3 in the MYB29-MYC3 complex. The MYC3-interacting residues of MYB29 are highlighted as sticks. f, The electrostatic surface potentials of MYB29 in the MYB29-MYC3 complex. MYC3 is shown as cartoon with the MYB29-interacting residues highlighted as sticks. The negatively and positively charged residues are colored in red and blue on the surface, respectively.

Extended Data Fig. 3 Electron density maps of the key residues of the MYB-bHLH complexes.

a-f, 2mFo-DFc electron density maps of the residues important for the complex formation of WER-EGL3 (a,b), CPC-EGL3 (c,d) and MYB29-MYC3 (e,f). The electron density maps are contoured at 1.5, 1.5, and 1.0 sigma levels in WER-EGL3, CPC-EGL3 and MYB29-MYC3, respectively.

Extended Data Fig. 4 Mapping the interaction domains of CPC and EGL3.

a, Mapping the interacting regions of CPC and EGL3 by Y2H assay. b, ITC experiments showing the binding affinities between EGL3 and full-length CPC or CPC R3 (CPC 30–94).

Source data

Extended Data Fig. 5 Sequence alignment of MYB transcriptional factors homologous to WER or CPC in Arabidopsis.

a, Sequence alignment of the R2R3-type MYBs homologous to WER. b, Sequence alignment of R3-type MYBs homologous to CPC. The secondary structures are indicated at the top of the sequence alignment. The residues involved in binding to EGL3 are indicated by black arrows.

Extended Data Fig. 6 SDS-PAGE analysis of SEC experiments.

a, The SEC fraction of WER-EGL3 + CPC in Fig. 3a, while the same SDS-PAGE gel is displayed with high contrast. b-f, The SEC fractions of CPC-EGL3 (b), WER-EGL3 (c), CPC (d), WER (e) and EGL3 (f) in Fig. 3a are analyzed by SDS-PAGE, together with their corresponding SEC profiles. The experiments were repeated independently twice with similar results.

Source data

Extended Data Fig. 7 CPC Met49 residue is important to compete with WER for binding to EGL3.

a, ITC experiments showing the binding affinities between EGL3 and CPC mutants. b, ITC experiments showing the binding affinities between EGL3 and WER mutants.

Source data

Extended Data Fig. 8 Western blotting analysis.

The in vivo protein expression levels for spilt luciferase analysis in Fig. 3b are verified by Western blotting, and the experiments were repeated independently twice with similar results.

Source data

Extended Data Fig. 9 The competitive capability of WER against CPC to form a complex with EGL3.

a, Split-luciferase assay to detect the competition of WER against CPC to interact with EGL3. b, Quantitative measurement of the competitive capability of WER against CPC to form a complex with EGL3 by microscale thermophoresis (MST) assay, and the data were presented as mean values ± SD of three independent experiments (n = 3).

Source data

Extended Data Fig. 10 Bio-Layer Interferometry (BLI) assay.

BLI experiments are performed to test the binding affinities of WER-EGL3 and CPC-EGL3.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–17, Tables 1–6 and Source data for Supplementary Fig. 1.

Reporting Summary.

Source data

Source Data Fig. 1

Raw data of ITC.

Source Data Fig. 3

Unprocessed SDS-gel.

Source Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 1

Unprocessed SDS-gel.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 4

Raw data of ITC.

Source Data Extended Data Fig. 6

Unprocessed SDS-gels.

Source Data Extended Data Fig. 7

Raw data of ITC.

Source Data Extended Data Fig. 8

Unprocessed western blots.

Source Data Extended Data Fig. 9

Statistical source data.

Source Data Extended Data Fig. 10

Statistical source data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Luo, Q., Li, Y. et al. Structural insights into partner selection for MYB and bHLH transcription factor complexes. Nat. Plants 8, 1108–1117 (2022). https://doi.org/10.1038/s41477-022-01223-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-022-01223-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing