Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A comprehensive fluorescent sensor for spatiotemporal cell cycle analysis in Arabidopsis

Abstract

Assessing cell proliferation dynamics is crucial to understand the spatiotemporal control of organogenesis. Here we have generated a versatile fluorescent sensor, PlaCCI (plant cell cycle indicator) on the basis of the expression of CDT1a-CFP, H3.1-mCherry and CYCB1;1-YFP, that identifies cell cycle phases in Arabidopsis thaliana. This tool works in a variety of organs, and all markers and the antibiotic resistance are expressed from a single cassette, facilitating the selection in mutant backgrounds. We also show the robustness of PlaCCI line in live-imaging experiments to follow and quantify cell cycle phase progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of PlaCCI.
Fig. 2: Use of PlaCCI reporter in various experimental settings.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487–498 (2007).

    Article  Google Scholar 

  2. Sugiyama, M. et al. Illuminating cell-cycle progression in the developing zebrafish embryo. Proc. Natl Acad. Sci. USA 106, 20812–20817 (2009).

    Article  CAS  Google Scholar 

  3. Zielke, N. et al. Fly-FUCCI: a versatile tool for studying cell proliferation in complex tissues. Cell Rep. 7, 588–598 (2014).

    Article  CAS  Google Scholar 

  4. Bajar, B. T. et al. Fluorescent indicators for simultaneous reporting of all four cell cycle phases. Nat. Methods 13, 993–996 (2016).

    Article  CAS  Google Scholar 

  5. Caro, E., Castellano, M. M. & Gutierrez, C. A chromatin link that couples cell division to root epidermis patterning in Arabidopsis. Nature 447, 213–217 (2007).

    Article  CAS  Google Scholar 

  6. Caro, E. & Gutierrez, C. A green GEM: intriguing analogies with animal geminin. Trends Cell Biol. 17, 580–585 (2007).

    Article  CAS  Google Scholar 

  7. Colon-Carmona, A., You, R., Haimovitch-Gal, T. & Doerner, P. Technical advance: spatio-temporal analysis of mitotic activity with a labile cyclin–GUS fusion protein. Plant J. 20, 503–508 (1999).

    Article  CAS  Google Scholar 

  8. Adachi, S. et al. Programmed induction of endoreduplication by DNA double-strand breaks in Arabidopsis. Proc. Natl Acad. Sci. USA 108, 10004–10009 (2011).

    Article  CAS  Google Scholar 

  9. Yin, K. et al. A dual-color marker system for in vivo visualization of cell cycle progression in Arabidopsis. Plant J. 80, 541–552 (2014).

    Article  CAS  Google Scholar 

  10. Jones, A. R. et al. Cell-size dependent progression of the cell cycle creates homeostasis and flexibility of plant cell size. Nat. Commun. 8, 15060 (2017).

    Article  Google Scholar 

  11. Desvoyes, B. et al. FBL17 targets CDT1a for degradation in early S-phase to prevent Arabidopsis genome instability. Preprint at https://www.biorxiv.org/content/10.1101/774109v1 (2019).

  12. Castellano, M. M., Boniotti, M. B., Caro, E., Schnittger, A. & Gutierrez, C. DNA replication licensing affects cell proliferation or endoreplication in a cell type-specific manner. Plant Cell 16, 2380–2393 (2004).

    Article  CAS  Google Scholar 

  13. Otero, S., Desvoyes, B., Peiro, R. & Gutierrez, C. Histone H3 dynamics uncovers domains with distinct proliferation potential in the Arabidopsis root. Plant Cell 28, 1361–1371 (2016).

    Article  CAS  Google Scholar 

  14. Ubeda-Tomas, S. et al. Gibberellin signaling in the endodermis controls Arabidopsis root meristem size. Curr. Biol. 19, 1194–1199 (2009).

    Article  CAS  Google Scholar 

  15. Sarrion-Perdigones, A. et al. GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS ONE 6, e21622 (2011).

    Article  CAS  Google Scholar 

  16. Montané, M.-H. & Menand, B. ATP-competitive mTOR kinase inhibitors delay plant growth by triggering early differentiation of meristematic cells but no developmental patterning change. J. Exp. Bot. 64, 4361–4374 (2013).

    Article  Google Scholar 

  17. Barbet, N. C. et al. TOR controls translation initiation and early G1 progression in yeast. Mol. Biol. Cell 7, 25–42 (1996).

    Article  CAS  Google Scholar 

  18. Park, J. A. et al. Retinoblastoma protein regulates cell proliferation, differentiation, and endoreduplication in plants. Plant J. 42, 153–163 (2005).

    Article  CAS  Google Scholar 

  19. Desvoyes, B., Ramirez-Parra, E., Xie, Q., Chua, N. H. & Gutierrez, C. Cell type-specific role of the retinoblastoma/E2F pathway during Arabidopsis leaf development. Plant Physiol. 140, 67–80 (2006).

    Article  CAS  Google Scholar 

  20. Harashima, H. & Sugimoto, K. Integration of developmental and environmental signals into cell proliferation and differentiation through RETINOBLASTOMA-RELATED 1. Curr. Opin. Plant Biol. 29, 95–103 (2016).

    Article  CAS  Google Scholar 

  21. Wildwater, M. et al. The RETINOBLASTOMA-RELATED gene regulates stem cell maintenance in Arabidopsis roots. Cell 123, 1337–1349 (2005).

    Article  CAS  Google Scholar 

  22. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article  CAS  Google Scholar 

  23. Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinforma. 18, 529 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Confocal Microscopy and the Cytometry services of CBMSO for support, E. Martinez-Salas for comments, S. Herrero-Desvoyes for help with cell size measurements, E. Caro for the terminator modules for GoldenBraid constructs, V. Mora-Gil for technical assistance and members of the laboratory for continuous feedback. Research in our laboratory is supported by grant nos. BIO2017-92329-EXP and RTI2018-094793-B-I00 from MICIU, and ERC-2018-AdG_833617 from European Union, and by institutional grants from Banco de Santander and Fundación Ramon Areces to the Centro de Biología Molecular Severo Ochoa.

Author information

Authors and Affiliations

Authors

Contributions

B.D. and C.G designed this work. A.A.-E. and M.D.B. participated in the initial cloning steps. B.D. performed all the experiments. B.D. and C.G. wrote the manuscript.

Corresponding authors

Correspondence to Bénédicte Desvoyes or Crisanto Gutierrez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Lieven De Veylder and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Table 1.

Reporting Summary

Supplementary Video 1

Time lapse (7 h) of the root meristem of a PlaCCI line showing the switching on/off of various cell cycle markers.

Supplementary Data 1

Source data for Supplementary Fig. 4.

Supplementary Data 2

Source data for Supplementary Fig. 5a.

Supplementary Data 3

Source data for Supplementary Fig. 5b.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desvoyes, B., Arana-Echarri, A., Barea, M.D. et al. A comprehensive fluorescent sensor for spatiotemporal cell cycle analysis in Arabidopsis. Nat. Plants 6, 1330–1334 (2020). https://doi.org/10.1038/s41477-020-00770-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-020-00770-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing