Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Breeding of ornamental orchids with focus on Phalaenopsis: current approaches, tools, and challenges for this century

Abstract

Ornamental orchid breeding programs have been conducted to develop commercially valuable cultivars with improved characteristics of commercial interest, such as size, flower color, pattern, shape, and resistance to pathogens. Conventional breeding, including sexual hybridization followed by selection of desirable characteristics in plants, has so far been the main method for ornamental breeding, but other techniques, including mutation induction by polyploidization and gamma irradiation, and biotechnological techniques, such as genetic transformation, have also been studied and used in ornamental breeding programs. Orchids are one of the most commercially important families in floriculture industry, having very particular reproductive biology characteristics and being a well-studied group of ornamentals in terms of genetic improvement. The present review focuses on the conventional and biotechnological techniques and approaches specially employed in breeding Phalaenopsis orchids, the genus with highest worldwide importance as an ornamental orchid, highlighting the main limitations and strengths of the approaches. Furthermore, new opportunities and future prospects for ornamental breeding in the CRISPR/Cas9 genome editing era are also discussed. We conclude that conventional hybridization remains the most used method to obtain new cultivars in orchids. However, the emergence of the first biotechnology-derived cultivars, as well as the new biotechnological tools available, such as CRISPR-Cas9, rekindled the full potential of biotechnology approaches and their importance for improve ornamental orchid breeding programs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biotechnological and conventional approaches for orchid breeding.
Fig. 2: Conventional hybridization by hand-cross pollination, seed obtaining and in vitro development of seedlings of Phalaenopsis orchids.
Fig. 3: Heritability of the ‘Harlequin’ trait in Phalaenopsis orchids.

Similar content being viewed by others

References

  • Ahmad Z, Hassan AA, Idris NA, Basiran MN, Tanaka A, Shikazono N et al. (2006) Effects of ion beam irradiation on Oncidium lanceanum. J Nuclerar Relat Technol 3:1–8

    Google Scholar 

  • Ahmad S, Chen J, Chen G, Huang J, Zhou Y, Zhao K, Lan S, Liu Z, Peng D (2022) Why Black Flowers? An Extreme Environment and Molecular Perspective of Black Color Accumulation in the Ornamental and Food Crops. Front Plant Sci 13:885176

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahn CH, Ramya M, An HR, Park PM, Kim YJ, Lee SY et al. (2020) Progress and challenges in the improvement of ornamental plants by genome editing. Plants 9(6):687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anghelescu NE, Vafaee Y, Ahmadzadeh K, Chen JT (2023) Asymbiotic seed germination in terrestrial orchids: problems, progress, and prospects. In: Tiwari P, Chen JT. (eds) Advances in orchid biology, biotechnology, and omics. Springer, Singapore

  • Anne S, Lim JH (2020) Mutation breeding using gamma irradiation in the development of ornamental plants: a review. Flower Res J 28:102–115

    Article  Google Scholar 

  • Azadi P, Bagheri H, Nalousi AM, Nazari F, Chandler SF (2016) Current status and biotechnological advances in genetic engineering of ornamental plants. Biotechnol Adv 34:1073–1090

    Article  PubMed  Google Scholar 

  • Bai Y, Ma Y, Chang Y, Zhang W, Deng Y, Zhang N et al. (2023) Identification and transcriptome data analysis of ARF family genes in five Orchidaceae species. Plant Mol Biol 112:85–98

    Article  CAS  PubMed  Google Scholar 

  • Balilashaki K, Gantait S, Naderi R, Vahedi M (2015) Capsule formation and asymbiotic seed germination in some hybrids of Phalaenopsis, influenced by pollination season and capsule maturity. Physiol Mol Biol Plants 21(3):341–347

    Article  PubMed  PubMed Central  Google Scholar 

  • Balilashaki K, Zakizadeh H, Olfati JA, Vahedi M, Kumar A, Indracanti M (2019) Recent advances in Phalaenopsis orchid improvement using omics approaches. Plant Tiss Cult Biotech 29(1):133–149

    Article  Google Scholar 

  • Belarmino MM, Mii M (2000) Agrobacterium-mediated genetic transformation of a Phalaenopsis orchid. Plant Cell Rep 19:435–442

    Article  CAS  PubMed  Google Scholar 

  • Billore V, Mirajkar SJ, Suprasanna P, Jain M (2019) Gamma irradiation induced effects on in vitro shoot cultures and influence of monochromatic light regimes on irradiated shoot cultures of Dendrobium sonia orchid. Biotechnol Rep 22:e00343

    Article  Google Scholar 

  • Boutigny A-L, Dohin N, Pornin D, Rolland M (2020) Overview and detectability of the genetic modifications in ornamental plants. Hortic Res 7:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai J, Liu X, Vanneste K, Proost S, Tsai W-C, Liu K-W et al. (2015) The genome sequence of the orchid Phalaenopsis equestris. Nat Genet 47:65–72

    Article  CAS  PubMed  Google Scholar 

  • Cardoso JC, Vendrame WA (2022) Innovation in propagation and cultivation of ornamental plants. Horticulturae 8:229

    Article  Google Scholar 

  • Cardoso JC, Zanello CA, Chen JT (2020) An overview of orchid protocorm-like bodies: Mass propagation, biotechnology, molecular aspects, and breeding. Int J Mol Sci 21(3):985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai ML, Xu CJ, Senthil KK, Kim JY, Kim DH (2002) Stable transformation of protocorm-like bodies in Phalaenopsis orchid mediated by Agrobacterium tumefaciens. Sci Hortic 96:213–224

    Article  CAS  Google Scholar 

  • Chan Y-L, Lin K-H, Sanjaya, Liao L-J, Chen W-H, Chan M-T (2005) Gene stacking in Phalaenopsis orchid enhances dual tolerance to pathogen attack. Transgenic Res 14:279–288

    Article  CAS  PubMed  Google Scholar 

  • Chao Y-T, Yen S-H, Yeh J-H, Chen W-C, Shih M-C (2017) Orchidstra 2.0—a transcriptomics resource for the orchid family. Plant Cell Physiol 58(1):e9

    PubMed  Google Scholar 

  • Chen WH, Tang CY, Kao YL (2010) Polyploidy and variety improvement of Phalaenopsis orchids. Acta Hortic 878:133–138

    Article  Google Scholar 

  • Chen WH, Hsu CY, Cheng HY, Chang H, Chen HH, Ger MJ (2011) Downregulation of putative UDP-glucose: Flavonoid 3-O-glucosyltransferase gene alters flower coloring in Phalaenopsis. Plant Cell Rep. 30:1007–1017

    Article  CAS  PubMed  Google Scholar 

  • Chen XG, Wu YH, Li NQ, Gao JY (2022) What role does the seed coat play during symbiotic seed germination in orchids: an experimental approach with Dendrobium officinale. BMC Plant Biol 22:375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chew Y-C, Halim MHA, Abdullah WMANW, Abdullah JO, Lai KS (2018) Highly efficient proliferation and regeneration of protocorm-like bodies (PLBs) of the threatened orchid, Phalaenopsis bellina. Sains Malaysiana 47:1093–1099

    Article  CAS  Google Scholar 

  • Chew Y-C, Abdullah WMANW, Kok D-XA, Ong-Abdullah J, Mahmood M, Lai K-S (2019) Development of an efficient particle bombardment transformation system for the endemic orchid, Phalaenopsis bellina. Sains Malaysiana 48:1867–1877

    Article  CAS  Google Scholar 

  • Chin DP, Mishiba K, Mii M (2007b) Agrobacterium-mediated transformation of protocorm-like bodies in Cymbidium. Plant Cell Rep 26:735–743

    Article  CAS  PubMed  Google Scholar 

  • Chin DP, Mii M, Mishiba KI (2007a) Production of transgenic Phalaenopsis plants by introducing glutathione S-transferase gene into protocorms at an early stage after germination. Acta Hortic 743:101–105

    Article  CAS  Google Scholar 

  • Chin DP, Shiratori I, Shimizu A, Kato K, Mii M, Waga I (2018) Generation of brilliant green fluorescent petunia plants by using a new and potent fluorescent protein transgene. Sci Rep 8(1):16556

    Article  PubMed  PubMed Central  Google Scholar 

  • Chuang HT, Huang KL, Shen RS, Miyajima I, Hsu ST (2014) Using cut-column pollination method to overcome crossing barriers in Phalaenopsis sunrise goldmour ‘KHM637. J Fac Agric Kyushu Univ 59:265–271

    Article  Google Scholar 

  • Corte LED, Mahmoud LM, Moraes TS, Mou Z, Grosser JW, Dutt M (2019) Development of improved fruit, vegetable, and ornamental crops using the CRISPR/cas9 genome editing technique. Plants 8(12):601

    Article  CAS  Google Scholar 

  • Cribb P, Schuiteman A (2012) Phalaenopsis-distribution and ecology. Renziana 2:10–13

    Google Scholar 

  • Davey MR, Anthony P, Patel D, Power JB (2010) Plant protoplasts: isolation, culture and plant regeneration. In: Plant cell culture: essential methods, Wiley-Blackwell, New York, pp 153–173.

  • Eeckhaut T, Lakshmanan PS, Deryckere D, Van Bockstaele E, Van Huylenbroeck J (2013) Progress in plant protoplast research. Planta 238:991–1003

    Article  CAS  PubMed  Google Scholar 

  • Eeckhaut T, Van Houtven W, Bruznican S, Leus L, Van Huylenbroeck J (2020) Somaclonal variation in chrysanthemum× morifolium protoplast regenerants. Front Plant Sci 11:607171

    Article  PubMed  PubMed Central  Google Scholar 

  • Enoki S, Takahara Y (2022) Applications of biotechnological approaches in the product and breeding of Phalaenopsis orchids. In: Khan M(ed) Tropical plant species. IntechOpen, London. https://doi.org/10.5772/intechopen.104597

  • Fraiture M, Zheng X, Brunner F (2014) An Arabidopsis and tomato mesophyll protoplast system for fast identification of early MAMP-triggered immunity-suppressing effectors. In: Plant-pathogen interactions, Springer, pp 213–230

  • Gaillochet C, Develtere W, Jacobs TB (2021) CRISPR screens in plants: approaches, guidelines, and future prospects. Plant Cell 33(4):794–813

    Article  PubMed  PubMed Central  Google Scholar 

  • Grosser JW, Calovic M, Louzada ES (2010) Protoplast fusion technology—somatic hybridization and cybridization. In: Plant cell culture: essential methods, Wiley-Blackwell, New York, pp 175–198

  • Hossain MM, Kant R, Van PT, Winarto B, Zeng S, Teixeira da Silva JA (2013) The application of biotechnology to orchids. Crit Rev Plant Sci 32:69–139

    Article  CAS  Google Scholar 

  • Hsiao YY, Pan Z-J, Hsu C-C, Yang Y-P, Hsu Y-C, Chuang Y-C et al. (2011b) Research on orchid biology and biotechnology. Plant Cell Physiol 52:1467–1486

    Article  CAS  PubMed  Google Scholar 

  • Hsiao Y-Y, Chen Y-W, Huang S-C, Pan Z-J, Fu C-H, Chen W-H et al. (2011a) Gene discovery using next-generation pyrosequencing to develop ESTs for Phalaenopsis orchids. BMC Genom 12:360

    Article  CAS  Google Scholar 

  • Hsieh K-T, Liu S-H, Wang I-W, Chen L-J (2020) Phalaenopsis orchid miniaturization by overexpression of OsGA2ox6, a rice GA2‑oxidase gene. Bot Stud 61:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsing HX, Lin YJ, Tong C-G, Li MJ, Chen YJ, Ko SS (2016) Efficient and heritable transformation of Phalaenopsis orchids. Bot Stud 57:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu CC, Chen SY, Lai PH, Hsiao YY, Tsai WC, Liu Z-J et al. (2020) Identification of high-copy number long terminal repeat retrotransposons and their expansion in Phalaenopsis orchids. BMC Genom 21:1–13

    Article  Google Scholar 

  • Hsu C-C, Su C-J, Jeng M-F, Chen W-H, Chen H-H (2019) A HORT1 retrotransposon insertion in the PeMYB11 promoter causes Harlequin/black flowers in Phalaenopsis Orchids. Plant Physiol 180:1535–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Kuo Y-W, Chuang Y-C, Yang Y-P, Huang L-M, Jeng M-F, Chen W-H, Chen H-H (2021) Terpene synthase-b and terpene synthase-e/f genes produce monoterpenes for Phalaenopsis bellina floral scent. Front Plant Sci 12:700958

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang JZ, Lin CP, Cheng TC, Chang BCH, Cheng SY, Chen Y-W et al. (2015) A de novo floral transcriptome reveals clues into Phalaenopsis orchid flower development. PLoS One 10(5):e0123474

    Article  PubMed  PubMed Central  Google Scholar 

  • Ichihashi S, Shigemura S (2002) Phalaenopsis callus and protoplast culture. In: Proceedings of the 17th World Orchid Conference, Malaysia, pp 257–261

  • Julkifle AL, Rathinam X, Sinniah UR, Subramaniam S (2010) Optimisation of transient green fluorescent protein (GFP) gene expression in Phalaenopsis violacea orchid mediated by Agrobacterium tumefaciens-mediated transformation system. Aust J Basic Appl Sci 4(8):3424–3432

    CAS  Google Scholar 

  • Khatun K, Nath U, Rahman M (2020) Tissue culture of Phalaenopsis: present status and future prospects. J Adv Biotechnol Exp Ther 3:273

    Article  Google Scholar 

  • Kim JB (2020) Current status on applications of conventional breeding techniques and biotechnological system in ornamentals. J Plant. Biotechnol 47:107–117

    Google Scholar 

  • Kim SH, Kim SW, Ahn J-W, Ryu J, Kwon S-J, Kang B-C et al. (2020b) Frequency, Spectrum, and stability of leaf mutants induced by diverse γ-ray treatments in two cymbidium hybrids. Plants 9(4):546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Jo YD, Ryu J, Hong MJ, Kang BC, Kim JB (2020a) Effects of the total dose and duration of γ-irradiation on the growth responses and induced SNPs of a Cymbidium hybrid. Int J Radiat Biol 96:545–551

    Article  CAS  PubMed  Google Scholar 

  • Kurniadi AS, Irawati F, Putra SED, Hardjo PH (2023) Induction of protocorm-like bodies (PLBs) Phalaenopsis spp. Hybrids mutation through ultraviolet irradiation (UV254) and Ethyl Methane Sulfonate (EMS). J Appl Agric Sci 7:1–15

    Google Scholar 

  • Lee H-J, Kim Y-E, Yoon Y-J, Jeong C-S, Lian ML, Paek K-Y et al. (2016) Highly endoreduplicated floral organs of somaclonal variants in clonally propagated Phalaenopsis ‘Spring Dancer. Plant Cell Tiss Organ Cult 126:67–77

    Article  Google Scholar 

  • Lee Y-I, Tseng Y, Lee Y-C, Chung M-C (2020) Chromosome constitution and nuclear DNA content of Phalaenopsis hybrids. Sci Hortic 262:109089

    Article  CAS  Google Scholar 

  • Lestari EP, Yunus A, Sugiyarto S (2018) Diversity induction of Dendrobium sylvanum orchid through in vitro irradiation of gamma Ray. Biosaintifika J Biol Biol Educ 10:691–697

    Article  Google Scholar 

  • Li C, Dong N, Zhao Y, Wu S, Liu Z, Zhai J (2021) A review for the breeding of orchids: current achievements and prospects. Hortic Plant J 7:380–392

    Article  CAS  Google Scholar 

  • Li F, Cheng Y, Zhao X, Yu R, Li H, Wang L et al. (2020) Haploid induction via unpollinated ovule culture in gerbera hybrida. Sci Rep. 10(1):1–9

    Google Scholar 

  • Li J, Kuang P, Liu RD, Wang D, Wang ZN, Huang MR (2013) Transfer of the GAFP and NPI, two disease-resistant genes, into a Phalaenopsis by Agrobacterium tumefaciens. Pak J Bot 45:1761–1766

    Google Scholar 

  • Li J, Liao X, Zhou S, Liu S, Jiang L, Wang G (2018) Efficient protoplast isolation and transient gene expression system for Phalaenopsis hybrid cultivar ‘Ruili Beauty. Vitr Cell Dev Biol - Plant 54:87–93

    Article  CAS  Google Scholar 

  • Liang C-Y, Rengasamy KP, Huang L-M, Hsu C-C, Jeng M-F, Chen W-H et al. (2020) Assessment of violet-blue color formation in Phalaenopsis orchids. BMC Plant Biol 20:212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao L-J, Pan I-C, Chan Y-L, Hsu Y-H, Chen W-H, Chan M-T (2004) Transgene silencing in Phalaenopsis expressing the coat protein of Cymbidium Mosaic Virus is a manifestation of RNA-mediated resistance. Mol Breed 13:229–242

    Article  CAS  Google Scholar 

  • Liau C-H, You S-J, Prasad V, Hsiao H-H, Lu J-C, Yang N-S et al. (2003) Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid. Plant Cell Rep. 21:993–998

    Article  CAS  PubMed  Google Scholar 

  • Lin H-Y, Chen J-C, Fang S-C (2018) A protoplast transient expression system to enable molecular, cellular, and functional studies in Phalaenopsis orchids. Front Plant Sci 9:843

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin YY (2021) Phalaenopsis Harlequin Breeding – Past, Present and Future. Brother Orchid Nursery Co.

  • Lou Y, Zhang Q, Xu Q, Yu X, Wang W, Gai R, Ming F (2023) PhCHS5 and PhF3'5’H Genes Over-Expression in Petunia (Petunia hybrida) and Phalaenopsis (Phalaenopsis aphrodite) Regulate Flower Color and Branch Number. Plants 12(11):2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma LY, Zhang T (2011) Effects of radiation of 60Co γ-ray on the genetic stability of Phalaenopsis aphrodite. J Anhui Agric Univ 38:802–805

    CAS  Google Scholar 

  • Machmudi M, Purnobasuki H, Utami ESW (2019) The optimization mesophyll protoplast isolation for Phalaenopsis amboinensis. Bulg J Agric Sci 25:737–743

    Google Scholar 

  • Magdalita PM, Pascual AOS, Villareal RL (2020) Characterization and flowering behavior of eleven philippine native Phalaenopsis species and gamma irradiation effects on Phalaenopsis aphrodite. Philipp J Sci 149:1–10

    Google Scholar 

  • Magdalita PM, Pascual AOS, Villareal RL (2022) Evaluation of plant and flower characteristics of selected 15-Gy irradiated Phalenopsis aphrodite. Mindanao J Sci Technol 20:236–249

    Article  Google Scholar 

  • Manchanda P, Kaur A, Gosal SS (2018) Somaclonal Variation for Sugarcane Improvement. In: Gosal SS Wani SH (eds) Biotechnologies of crop improvement, Vol 1, Springer International Publishing Cham, p 299–326

  • Maziah M, Fern C (2008) Agrobacterium-mediated genetic transformation of Phalaenopsis bellina using GFP and GUS reporter genes. Pertanika J Sci Technol 16:129–139

    Google Scholar 

  • Melsen K, van de Wouw M, Contreras R (2021) Mutation Breeding in Ornamentals. HortScience 56(10):1154–1165

    Article  Google Scholar 

  • Mii M, Chin DP (2018) Genetic transformation on orchid species: an overview of approaches and methodologies. In: Orchid Propagation: From Laboratories to Greenhouses—Methods and Protocols, pp 347–365

  • Mishiba KI, Chin DP, Mii M (2005) Agrobacterium-mediated transformation of Phalaenopsis by targeting protocorms at an early stage after germination. Plant Cell Rep. 24:297–303

    Article  CAS  PubMed  Google Scholar 

  • Naing AH, Adedeji OS, Kim CK (2021) Protoplast technology in ornamental plants: current progress and potential applications on genetic improvement. Sci Hort 283:110043

    Article  CAS  Google Scholar 

  • Nakamura N (2010) Dream comes true: development of a blue rose “Applause” and its fragrance. J Jpn Assoc Odor Environ 41:150–156

    Google Scholar 

  • Noda N, Yoshioka S, Kishimoto S, Nakayama M, Douzono M, Tanaka Y et al. (2017) Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism. Sci Adv 3(7):e1602785

    Article  PubMed  PubMed Central  Google Scholar 

  • Noman A, Aqeel M, Deng J, Khalid N, Sanaullah T, Shuilin H (2017) Biotechnological advancements for improving floral attributes in ornamental plants. Front Plant Sci 8:530

    Article  PubMed  PubMed Central  Google Scholar 

  • Nopitasari S, Setiawati Y, Lawrie MD, Purwantoro A, Widada J, Sasongko AB et al. (2020) Development of an Agrobacterium-delivered CRISPR/Cas9 for Phalaenopsis amabilis (L.) Blume genome editing system. AIP Conf Proc 2260(1):060014

    Article  CAS  Google Scholar 

  • Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA et al. (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Equip 30:1–16

    Article  CAS  Google Scholar 

  • Priyadarshan PM (2019) Introduction to Plant Breeding. In: PLANT BREEDING: Classical to modern. Springer, Singapore. https://doi.org/10.1007/978-981-13-7095-3_1

  • Putri HA, Purwito A, Sudarsono, Sukma D (2021) Morphological, molecular and resistance responses to soft-rot disease variability among plantlets of Phalaenopsis amabilis regenerated from irradiated protocorms. Biodiversitas 22:1077–1090

    Article  Google Scholar 

  • Qin X, Liu Y, Mao S, Li T, Wu H, Chu C et al. (2011) Genetic transformation of lipid transfer protein encoding gene in Phalaenopsis amabilis to enhance cold resistance. Euphytica 177:33–43

    Article  CAS  Google Scholar 

  • Raffeiner B, Serek M, Winkelmann T (2009) Agrobacterium tumefaciens-mediated transformation of Oncidium and Odontoglossum orchid species with the ethylene receptor mutant gene etr1-1. Plant Cell Tiss Organ Cult 98:125–134

    Article  CAS  Google Scholar 

  • Rajan RP, Singh G (2021) A review on application of somaclonal variation in important horticulture crops. Plant Cell Biotech. Mol Biol 22:161–175

    Google Scholar 

  • Ren R, Gao J, Lu C, Wei Y, Jin J, Wong S-M et al. (2020) Highly efficient protoplast isolation and transient expression system for functional characterization of flowering related genes in Cymbidium orchids. Int J Mol Sci 21:2264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren R, Gao J, Yin D, Li K, Lu C, Ahmad S et al. (2021) Highly efficient leaf base protoplast isolation and transient expression systems for orchids and other important monocot crops. Front Plant Sci 12:172

    Article  Google Scholar 

  • Royal Flora Holland (2020) The international orchid register / RHS Gardening. https://apps.rhs.org.uk/horticulturaldatabase/orchidregister/parentageresults.asp?page=2&seedgen=Phalaenopsis

  • Semiarti E, Indrianto A, Purwantoro A, Isminingsih S, Suseno N, Ishikawa T et al. (2007) Agrobacterium-mediated transformation of the wild orchid species Phalaenopsis amabilis. Plant Biotech 24:265–272

    Article  CAS  Google Scholar 

  • Semiarti E, Nopitasari S, Setiawati Y, Lawrie MD, Purwantoro A, Widada J et al. (2020a) Application of CRISPR/Cas9 genome editing system for molecular breeding of orchids. Indones J Biotech 25:61

    Article  Google Scholar 

  • Semiarti E, Indrianto A, Purwantoro YH, Martiwi INA, Feroniasanti YML, Nadifah F, Mercuriana IS, Dwiyani R, Iwakawa H, Yoshioka Y, Machida Y, Machida C (2010) High-frequency genetic transformation of Phalaenopsis amabilis orchid using tomato extract-enriched medium for the pre-culture of protocorms. J Hortic Sci Biotechnol 85(3):205–210. https://doi.org/10.1080/14620316.2010.11512655

    Article  CAS  Google Scholar 

  • Semiarti E, Indrianto A, Purwantoro A, Machida Y, Machi C (2011) Agrobacterium-mediated transformation of indonesian orchids for micropropagation. In: Genetic Transformation, InTech, pp 215–240.

  • Semiarti E, Purwantoro A, Puspita Sari I (2020b) Biotechnology approaches on characterization, mass propagation, and breeding of indonesian orchids Dendrobium lineale (Rolfe.) and Vanda tricolor (Lindl.) with its Phytochemistry. In: Mérillon JM, Kodja H (eds) Orchids phytochemistry, biology and horticulture, Springer, pp.299-312

  • Sherpa R, Devadas R, Bolbhat SN, Nikam TD, Penna S (2022) Gamma radiation induced in-vitro mutagenesis and isolation of mutants for early flowering and phytomorphological variations in Dendrobium ‘Emma White’. Plants 11(22):3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha BR, Tokuhara K, Mii M (2007b) Plant regeneration from cell suspension-derived protoplasts of Phalaenopsis. Plant Cell Rep. 26:719–725

    Article  CAS  PubMed  Google Scholar 

  • Shrestha BR, Chin DP, Tokuhara K, Mii M (2007a) Efficient production of transgenic plants of Vanda through sonication-assisted Agrobacterium-mediated transformation of protocorm-like bodies. Plant Biotech 24:429–434

    Article  CAS  Google Scholar 

  • Sjahril R, Mii M (2006) High-efficiency Agrobacterium- mediated transformation of Phalaenopsis using meropenem, a novel antibiotic to eliminate Agrobacterium. J Hortic Sci Biotech 81:458–464

    Article  Google Scholar 

  • Sjahril R, Dong PC, Raham SK, Yamamura S, Nakamura I, Amemiya Y et al. (2006) Transgenic Phalaenopsis plants with resistance to Erwinia carotovora produced by introducing wasabi defensin gene using Agrobacterium method. Plant Biotech 23:191–194

    Article  CAS  Google Scholar 

  • Su V, Hsu BD-D (2003) Cloning and expression of a putative cytochrome P450 gene that influences the colour of Phalaenopsis flowers. Biotech Lett 25:1933–1939

    Article  CAS  Google Scholar 

  • Su V, Hsu BD (2010) Transient expression of the cytochrome p450 CYP78A2 enhances anthocyanin production in flowers. Plant Mol Biol Rep. 28:302–308

    Article  CAS  Google Scholar 

  • Subramaniam S, Rathinam X (2010) Emerging factors that influence efficiency of T-DNA gene transfer into Phalaenopsis violacea orchid via Agrobacterium tumefaciens–mediated transformation system. Int J Biol 2:64–73

    Article  CAS  Google Scholar 

  • Subramaniam S, Vinod B, Sashi S, Rathinam X (2008) Optimization of the transient Gusa gene transfer of Phalaenopsis violacea orchid via Agrobacterium tumefaciens: An assessment of factors influencing the efficiency of gene transfer mechanisms. Adv Nat Appl Sci 2:77–88

    Google Scholar 

  • Suputri NPAEO, Prasojo IS, Prabowo LAT, Purwestri YA, Purnomo SE (2024) Identification of early flowering mutant gene in Phalaenopsis amabilis (L.) Blume for sgRNA construction in CRISPR/Cas9 genome editing system. Braz J Biol 84:e268133

    Article  Google Scholar 

  • Teixeira da Silva JA, Dobránszki J, Cardoso JC, Chandler SF, Zeng S (2016) Methods for genetic transformation in Dendrobium. Plant Cell Rep. 35:483–504

    Article  CAS  Google Scholar 

  • Thaneshwari T, Kumari P, Aswath C (2018) Haploid and double haploids in ornamentals a review. Int J Curr Microbiol Appl Sci 7(07):1322–1336

    Article  Google Scholar 

  • Tong C, Wu F, Yuan Y, Chen Y, Lin C (2020) High-efficiency CRISPR/Cas-based editing of Phalaenopsis orchid MADS genes. Plant Biotech J 18:889–891

    Article  Google Scholar 

  • Tsai CC (2014) A New hybrid genus Amenopsis (Orchidaceae) derived from the cross between Amesiella and Phalaenopsis. Acta Hortic 1025:57–60

    Article  Google Scholar 

  • Tsai WC, Dievart A, Hsu CC, Hsiao YY, Chiou SY, Huang H, Chen HH (2017) Post genomics era for orchid research. Bot Stud 58(1):1–22

    Article  CAS  Google Scholar 

  • Turnbull C, Lillemo M, Hvoslef-Eide TAK (2021) Global regulation of genetically modified crops amid the gene edited crop boom—a review. Front Plant Sci 12:630396

    Article  PubMed  PubMed Central  Google Scholar 

  • Utami ESW, Hariyanto S, Manuhara YSW (2018) Agrobacterium tumefaciens-mediated transformation of Dendrobium lasianthera J.J.Sm: An important medicinal orchid. J Genet Eng Biotech 16:703–709

    Article  Google Scholar 

  • Vendrame W, Faria RT, de, Sorace M, Sahyun SA (2014) Orchid cryopreservation. Ciênc Agrotec 38:213–229

    Article  Google Scholar 

  • Vendrame WA, Khoddamzadeh AA (2016) Orchid biotechnology. Hortic Rev 44:173–228

    Google Scholar 

  • Vilcherrez-Atoche JA, Iiyama CM, Cardoso JC (2022) Polyploidization in orchids: from cellular changes to breeding applications. Plants 11:469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilcherrez-Atoche JA, Silva JC, Clarindo WR, Mondin M, Cardoso JC (2023) In vitro Polyploidization of Brassolaeliocattleya Hybrid Orchid. Plants 12(2):281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vo T-C, Seo J-W, Kim CK, Kim H-Y, Lim K-B (2019) Breeding of the mini-type Phalaenopsis cultivar ‘yellow green’, having deep-yellow flowers with a red lip. Hort Sci Tech 37(4):540–547

    CAS  Google Scholar 

  • Wang H, Dong B, Jiang J, Fang W, Guan Z, Liao Y et al. (2014) Characterization of in vitro haploid and doubled haploid Chrysanthemum morifolium plants via unfertilized ovule culture for phenotypical traits and dna methylation pattern. Front Plant Sci 5:738

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang SL, Viswanath KK, Tong C-G, An HR, Jang S, Chen FC (2019) Floral induction and flower development of orchids. Front Plant Sci 10:1–15

    Article  Google Scholar 

  • Widiarsih S, Dwimahyani I (2013) Gamma irradiation application for mutation breeding in early flowering moth orchid (Phalaenopsis amabilis Bl.). J Ilm Apl Isot Radiasi 9:59–66

    Google Scholar 

  • Winarto B, Mattjik NA, Purwito A, Marwoto B (2010) Improvement of selected induction culture media on callus induction in anther culture of Anthurium and a histological study on its callus formation. J Nat Indones 12(2):93–101

    Article  Google Scholar 

  • Wu J-Y, Hsieh T-F, Tsao C-Y, Chuang K-C (2022) Breeding of an Indigo Phalaenopsis by Intergeneric Hybridization: Rhynchonopsis Tariflor Blue Kid ‘1030-4’. HortScience 57(3):489–490

    Article  Google Scholar 

  • Wu T, Zhao X, Yang S, Yang J, Zhu J, Kou Y et al. (2022) Induction of 2n pollen with colchicine during microsporogenesis in Phalaenopsis. Breed Sci 72:275–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia K, Zhang D, Xu X, Liu G, Yang Y, Chen Z et al. (2022) Protoplast technology enables the identification of efficient multiplex genome editing tools in Phalaenopsis. Plant Sci 322:111368

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Gao J, Wei Y, Ren R, Zhang G, Lu C-Q et al. (2021) The genome of Cymbidium sinense revealed the evolution of orchid traits. Plant Biotech J 19:2501–2516

    Article  CAS  Google Scholar 

  • Yeung EC (2022) The orchid embryo — “an embryonic protocorm. Botany 100(9):691–706

    Article  CAS  Google Scholar 

  • Yuan SC, Chin SW, Chen FC (2015) Current trends of Phalaenopsis orchid breeding and study on pollen storage. Acta Hortic 1078:19–23

    Article  Google Scholar 

  • Zanello CA, Cardoso JC (2019) PLBs induction and clonal plantlet regeneration from leaf segment of commercial hybrids of Phalaenopsis. J Hortic Sci Biotech 94:627–631

    Article  CAS  Google Scholar 

  • Zargar M, Zavarykina T, Voronov S, Pronina I, Bayat M (2022) The recent development in technologies for attaining doubled haploid plants in vivo. Agriculture 12(10):1595

    Article  CAS  Google Scholar 

  • Zhang L, Chin DP, Mii M (2010) Agrobacterium-mediated transformation of protocorm-like bodies in Cattleya. Plant Cell Tiss Organ Cult 103:41–47

    Article  Google Scholar 

  • Zhang YB, Liao FQ, Zhong HQ, Huang PP, Liu TF, Liu ZC (2009a) A preliminary study on pollen Irradiation for Phalaenopsis breeding. Fujian. J Agric Sci 24(3):237–240

    CAS  Google Scholar 

  • Zhang XF, Ren YL, Shang TC, Zhang W (2009b) Effect of 60Co-γ ray irradiation on Protocorm-like Bodies growth of Phalaenopsis. Northern Horticulture

  • Zhao P, Ren A, Dong P, Sheng Y, Chang X, Zhang X (2018) The antimicrobial peptaibol trichokonin IV promotes plant growth and induces systemic resistance against Botrytis cinerea infection in moth orchid. J Phytopathol 166:346–354

    Article  CAS  Google Scholar 

  • Zheng T, Li P, Li L, Zhang Q (2021) Research advances in and prospects of ornamental plant genomics. Hort Res 8(1):65

    Article  Google Scholar 

Download references

Acknowledgements

CMI and JAVA thanks to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. CMI and JCC thank to São Paulo Research Foundation (FAPESP) grant 2020/09426-4 and n° 2018/20673-3. JCC thanks to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for funding the Project 311083/2018-8. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. This work is supported by the USDA National Institute of Food and Agriculture, Hatch project 7001563. The authors would like to especially thank the Editor of Heredity, Prof. Dr. Frank Hailer, for his great efforts and intellectual and editorial contributions to improving the quality of this article.

Author information

Authors and Affiliations

Authors

Contributions

CMI: conceptualization, data curation, investigation, methodology, project administration, visualization, writing—original draft. JAV-A: data curation, investigation, validation, writing—review & editing. JCC: conceptualization, validation, funding acquisition, supervision, validation, writing, review, and editing. MAG: writing, reviewing, and editing. WAV: writing, reviewing, and editing.

Corresponding authors

Correspondence to Carla Midori Iiyama or Jean Carlos Cardoso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate editor: Frank Hailer.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iiyama, C.M., Vilcherrez-Atoche, J.A., Germanà, M.A. et al. Breeding of ornamental orchids with focus on Phalaenopsis: current approaches, tools, and challenges for this century. Heredity 132, 163–178 (2024). https://doi.org/10.1038/s41437-024-00671-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41437-024-00671-8

Search

Quick links