Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Projection of current and future distribution of adaptive genetic units in an alpine ungulate

Abstract

Climate projections predict major changes in alpine environments by the end of the 21st century. To avoid climate-induced maladaptation and extinction, many animal populations will either need to move to more suitable habitats or adapt in situ to novel conditions. Since populations of a species exhibit genetic variation related to local adaptation, it is important to incorporate this variation into predictive models to help assess the ability of the species to survive climate change. Here, we evaluate how the adaptive genetic variation of a mountain ungulate—the Northern chamois (Rupicapra rupicapra)—could be impacted by future global warming. Based on genotype-environment association analyses of 429 chamois using a ddRAD sequencing approach, we identified genetic variation associated with climatic gradients across the European Alps. We then delineated adaptive genetic units and projected the optimal distribution of these adaptive groups in the future. Our results suggest the presence of local adaptation to climate in Northern chamois with similar genetic adaptive responses in geographically distant but climatically similar populations. Furthermore, our results predict that future climatic changes will modify the Northern chamois adaptive landscape considerably, with various degrees of maladaptation risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of the study area illustrating the location of Northern chamois (Rupicapra rupicapra) sampled individuals.
Fig. 2: Adaptive landscape of the Northern chamois along the European Alps and Dinaric Mts.
Fig. 3: Delineation of adaptive and global genetic units.
Fig. 4: Projection of the four adaptive genetic units.
Fig. 5: Projection of shift in distribution of adaptive genetic units.
Fig. 6: Projection of genetic offset.

Similar content being viewed by others

Data availability

Raw reads are available under the NCBI bioproject “PRJNA813419” (Accession number for BioSamples: SAMN26501511 - SAMN26502071 and SRA: SRR18252263-SRR18252823).

References

  • Aitken SN, Bemmels JB (2016) Time to get moving: assisted gene flow of forest trees. Evolut Appl 9:271–290

    Article  Google Scholar 

  • Aitken SN, Whitlock MC (2013) Assisted Gene Flow to Facilitate Local Adaptation to Climate Change. Annu Rev Ecol Evol Syst 44:367–388

    Article  Google Scholar 

  • Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A et al. (2013) Potential for evolutionary responses to climate change – evidence from tree populations. Glob Change Biol 19:1645–1661

    Article  Google Scholar 

  • Alimperti S, Stelios TA (2015) CDH2 and CDH11 Act as Regulators of Stem Cell Fate Decisions. Stem Cell Res 14:270–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderwald P, Ambarli H, Avramov S, Ciach M, Corlatti L, Farkas A et al. (2021) Rupicapra rupicapra (amended version of 2020 assessment). The IUCN Red List of Threatened Species. Cambridge, United Kingdom

  • Apollonio M, Scandura M, Šprem N, Putman R, Apollonio M (2014) Reintroductions as a Management tool for European Ungulates. Behaviour and Management of European Ungulates. Whittles Publishing, Dunbeath, Caithness, p 46–77

    Google Scholar 

  • Arneth A, Denton F, Agus F, Elbehri A, Erb KH, Elasha BO et al. (2019) Framing and Context. In: Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (eds) Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. https://doi.org/10.1017/9781009157988.003

  • Ascenzi P, Clementi ME, Condò SG, Coletta M, Petruzzelli R, Polizio F et al. (1993) Functional, spectroscopic and structural properties of haemoglobin from chamois (Rupicapra rupicapra) and steinbock (Capra hircus ibex) Biochem J 296:361–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aublet J-F, Festa-Bianchet M, Bergero D, Bassano B (2009) Temperature constraints on foraging behaviour of male Alpine ibex (Capra ibex) in summer. Oecologia 159:237–247

    Article  PubMed  Google Scholar 

  • Barbosa S, Mestre F, White TA, Paupério J, Alves PC, Searle JB (2018) Integrative approaches to guide conservation decisions: Using genomics to define conservation units and functional corridors. Mol Ecol 27:3452–3465

    Article  PubMed  Google Scholar 

  • Barrett RDH, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23:38–44

    Article  PubMed  Google Scholar 

  • Bay RA, Harrigan RJ, Underwood VL, Gibbs HL, Smith TB, Ruegg K (2018) Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359:83–86

    Article  CAS  PubMed  Google Scholar 

  • Bell G (2013) Evolutionary rescue and the limits of adaptation. Philos Trans R Soc B: Biol Sci 368:20120080

    Article  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Bitter MC, Kapsenberg L, Gattuso J-P, Pfister CA (2019) Standing genetic variation fuels rapid adaptation to ocean acidification. Nat Commun 10:5821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Blanquart F, Kaltz O, Nuismer SL, Gandon S (2013) A practical guide to measuring local adaptation. Ecol Lett 16:1195–1205

    Article  PubMed  Google Scholar 

  • Borrell JS, Zohren J, Nichols RA, Buggs RJA (2020) Genomic assessment of local adaptation in dwarf birch to inform assisted gene flow. Evolut Appl 13:161–175

    Article  CAS  Google Scholar 

  • Breed MF, Harrison PA, Blyth C, Byrne M, Gaget V, Gellie NJC et al. (2019) The potential of genomics for restoring ecosystems and biodiversity. Nat Rev Genet 20:615–628

    Article  CAS  PubMed  Google Scholar 

  • Browne L, Wright JW, Fitz-Gibbon S, Gugger PF, Sork VL (2019) Adaptational lag to temperature in valley oak (Quercus lobata) can be mitigated by genome-informed assisted gene flow. Proc Natl Acad Sci USA 116:25179–25185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capblancq T, Fitzpatrick MC, Bay RA, Exposito-Alonso M, Keller SR (2020) Genomic prediction of (mal)adaptation across current and future climatic landscapes. Annu Rev Ecol Evol Syst 51:245–269

    Article  Google Scholar 

  • Capblancq T, Forester BR (2021) Redundancy analysis: A Swiss Army Knife for landscape genomics. Methods Ecol Evol 12:2298–2309

    Article  Google Scholar 

  • Capblancq T, Luu K, Blum MGB, Bazin E (2018) Evaluation of redundancy analysis to identify signatures of local adaptation. Mol Ecol Resour 18:1223–1233

    Article  CAS  PubMed  Google Scholar 

  • Capblancq T, Morin X, Gueguen M, Renaud J, Lobreaux S, Bazin E (2020) Climate‐associated genetic variation in Fagus sylvatica and potential responses to climate change in the French Alps. J Evol Biol 33:783–796

    Article  CAS  PubMed  Google Scholar 

  • Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH (2011) Stacks: Building and genotyping loci de novo from short-read sequences. G3: Genes|Genomes|Genet 1:171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catchen JM, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140

    Article  PubMed  PubMed Central  Google Scholar 

  • Caye K, Jumentier B, Lepeule J, Fran‡ois O (2019) LFMM 2: Fast and accurate inference of gene-environment associations in genome-wide studies. Mol Biol Evol 36:852–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Liu Z, Régnière J, Vasseur L, Lin J, Huang S et al. (2021) Large-scale genome-wide study reveals climate adaptive variability in a cosmopolitan pest. Nat Commun 12:7206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chirichella R, Stephens PA, Mason THE, Apollonio M (2021) Contrasting effects of climate change on alpine chamois. J Wildl Manag 85:109–120

    Article  Google Scholar 

  • Ciach M, Pęksa Ł (2019) Human-induced environmental changes influence habitat use by an ungulate over the long term. Curr Zool 65:129–137

    Article  PubMed  Google Scholar 

  • Corlatti L, Bonardi A, Bragalanti N, Pedrotti L (2019) Long-term dynamics of Alpine ungulates suggest interspecific competition. J Zool 309:241–249

    Article  Google Scholar 

  • Corlatti L, Herrero J, Ferretti F, Anderwald P, García-González R, Hammer S et al. (2022) Northern chamois Rupicapra rupicapra (Linnaeus, 1758) and Southern chamois Rupicapra pyrenaica Bonaparte, 1845. In: L Corlatti, F Zachos (eds) Handbook of the Mammals of Europe – Terrestrial Cetartiodactyla, Springer Nature, Heidelberg, Germany, p 325–366

  • Corlatti L, Lorenzini R, Lovari S (2011) The conservation of the chamois Rupicapra spp.: Biology and conservation of the chamois. Mammal Rev 41:163–174

    Article  Google Scholar 

  • Deinet S, Ieronymidou C, McRae L, Burfield IJ, Foppen RP, Collen B et al. (2013) Wildlife comeback in Europe: The recovery of selected mammal and bird species. Final report to Rewilding Europe by ZSL, BirdLife International and the European Bird Census Council. London, UK: ZSL

  • Engler R, Randin CR, Thuiller W, Dullinger S, Zimmermann NE, Araújo MB et al. (2011) 21st century climate change threatens mountain flora unequally across Europe. Glob Change Biol 17:2330–2341

    Article  Google Scholar 

  • Epstein B, Jones M, Hamede R, Hendricks S, McCallum H, Murchison EP et al. (2016) Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Nat Commun 7:12684

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Fournier P, Lewthwaite JMM, Mooers AØ (2021) Do we need to identify adaptive genetic variation when prioritizing populations for conservation? Conserv Genet 22:205–216

    Article  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Article  Google Scholar 

  • Fitzpatrick MC, Chhatre VE, Soolanayakanahally RY, Keller SR (2021) Experimental support for genomic prediction of climate maladaptation using the machine learning approach Gradient Forests. Mol Ecol Resour 21:2749–2765

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick MC, Keller SR (2015) Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol Lett 18:1–16

    Article  PubMed  Google Scholar 

  • Flanagan SP, Forester BR, Latch EK, Aitken SN, Hoban S (2018) Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evolut Appl 11:1035–1052

    Article  Google Scholar 

  • Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993

    Article  PubMed  PubMed Central  Google Scholar 

  • Forester BR, Lasky JR, Wagner HH, Urban DL (2018) Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol Ecol 27:2215–2233

    Article  CAS  PubMed  Google Scholar 

  • Frichot E, Schoville SD, Bouchard G, François O (2013) Testing for Associations between Loci and Environmental Gradients Using Latent Factor Mixed Models. Mol Biol Evol 30:1687–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frichot E, Schoville SD, de Villemereuil P, Gaggiotti OE, François O (2015) Detecting adaptive evolution based on association with ecological gradients: Orientation matters! Heredity 115:22–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaillard J-M, Festa-Bianchet M, Delorme D, Jorgenson J (2000) Body mass and individual fitness in female ungulates: bigger is not always better. Proc R Soc Lond Ser B: Biol Sci 267:471–477

    Article  CAS  Google Scholar 

  • Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M (2014) 21st century climate change in the European Alps-A review. Sci Total Environ 493:1138–1151

    Article  CAS  PubMed  Google Scholar 

  • González‐Serna MJ, Cordero PJ, Ortego J (2020) Insights into the neutral and adaptive processes shaping the spatial distribution of genomic variation in the economically important Moroccan locust (Dociostaurus maroccanus). Ecol Evol 10:3991–4008

    Article  PubMed  PubMed Central  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  PubMed  Google Scholar 

  • Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P (2014) Using genomics to characterize evolutionary potential for conservation of wild populations. Evolut Appl 7:1008–1025

    Article  Google Scholar 

  • Hereford J (2009) A Quantitative Survey of Local Adaptation and Fitness Trade‐Offs. Am Nat 173:579–588

    Article  PubMed  Google Scholar 

  • Hermisson J, Pennings PS (2005) Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics 169:2335–2352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoban S, Archer FI, Bertola LD, Bragg JG, Breed MF, Bruford MW et al. (2022) Global genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (EBVs) for genetic composition. Biol Rev 97:1511–1538

    Article  PubMed  Google Scholar 

  • Hoban S, Bruford M, Jackson JD, Lopes-Fernandes M, Heuertz M, Hohenlohe PA et al. (2020) Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol Conserv 248:108654

    Article  Google Scholar 

  • Hock R, Rasul G, Adler C, Cáceres B, Gruber S, Hirabayashi Y et al. (2019) High Mountain Areas. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [Pörtner H-0, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM (eds). In press.

  • Hoegh-Guldberg O, Jacob D, Taylor M, Bindi M, Brown S, Camilloni I et al. (2018) Impacts of 1.5°C Global Warming on Natural and Human Systems. In: Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In Press.

  • Hoffmann AA, Miller AD, Weeks AR (2021) Genetic mixing for population management: From genetic rescue to provenancing. Evol Appl 14:634–652

    Article  PubMed  Google Scholar 

  • Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    Article  CAS  PubMed  Google Scholar 

  • Hohenlohe PA, Funk WC, Rajora OP (2021) Population genomics for wildlife conservation and management. Mol Ecol 30:62–82

    Article  PubMed  Google Scholar 

  • IPCC (2019) Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (eds). In press

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Kassambara A, Mundt F (2020) Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. https://CRAN.R-project.org/package=factoextra

  • Kaufman L, Rousseeuw P (1990) Finding groups in data: an Introduction to cluster analysis. Wiley, New York

  • La Sorte FA, Jetz W (2010) Projected range contractions of montane biodiversity under global warming. Proc R Soc B-Biol Sci 277:3401–3410

    Article  Google Scholar 

  • Lai Y-T, Yeung CKL, Omland KE, Pang E-L, Hao Y, Liao B-Y et al. (2019) Standing genetic variation as the predominant source for adaptation of a songbird. Proc Natl Acad Sci 116:2152–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancaster LT, Fuller ZL, Berger D, Barbour MA, Jentoft S, Wellenreuther M (2022) Understanding climate change response in the age of genomics. J Anim Ecol 91:1056–1063

    Article  PubMed  Google Scholar 

  • Leimu R, Fischer M (2008) A Meta-Analysis of Local Adaptation in Plants. PLOS ONE 3:1–8

    Article  Google Scholar 

  • Leugger F, Broquet T, Karger DN, Rioux D, Buzan E, Corlatti L et al. (2022) Dispersal and habitat dynamics shape the genetic structure of the Northern chamois in the Alps. J Biogeogr 49:1848–1861

    Article  Google Scholar 

  • Loison A, Darmon G, Cassar S, Jullien JM, Maillard D (2008) Age- and sex-specific settlement patterns of chamois (Rupicapra rupicapra) offspring. Can J Zool-Rev Canadienne De Zoologie 86:588–593

    Article  Google Scholar 

  • Loison A, Jullien JM, Menaut P (1999) Subpopulation structure and dispersal in two populations of chamois. J Mammal 80:620–632

    Article  Google Scholar 

  • Lovari S, Franceschi S, Chiatante G, Fattorini L, Fattorini N, Ferretti F (2020) Climatic changes and the fate of mountain herbivores. Clim Change 162:2319–2337

    Article  Google Scholar 

  • Lowry DB, Hoban S, Kelley JL, Lotterhos KE, Reed LK, Antolin MF et al. (2017a) Responsible RAD: Striving for best practices in population genomic studies of adaptation. Mol Ecol Resour 17:366–369

    Article  PubMed  Google Scholar 

  • Lowry DB, Hoban S, Kelley JL, Lotterhos KE, Reed LK, Antolin MF et al. (2017b) Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol Ecol Resour 17:142–152

    Article  CAS  PubMed  Google Scholar 

  • Marchand P, Garel M, Bourgoin G, Dubray D, Maillard D, Loison A (2015) Sex-specific adjustments in habitat selection contribute to buffer mouflon against summer conditions. Behav Ecol 26:472–482

    Article  Google Scholar 

  • Martchenko D, Chikhi R, Shafer ABA (2020) Genome Assembly and Analysis of the North American Mountain Goat (Oreamnos americanus) Reveals Species-Level Responses to Extreme Environments. G3 Genes|Genomes|Genet 10:437–442

    Article  CAS  PubMed  Google Scholar 

  • Mason THE, Apollonio M, Chirichella R, Willis SG, Stephens PA (2014a) Environmental change and long-term body mass declines in an alpine mammal. Front Zool 11:69

    Article  Google Scholar 

  • Mason T, Stephens PA, Apollonio M, Willis SG (2014b) Predicting potential responses to future climate in an alpine ungulate: interspecific interactions exceed climate effects. Glob Change Biol 20:3872–3882

    Article  Google Scholar 

  • Montwé D, Isaac-Renton M, Hamann A, Spiecker H (2018) Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration. Nat Commun 9:1574

    Article  PubMed  PubMed Central  Google Scholar 

  • Nesti I, Posillico M, Lovari S (2010) Ranging behaviour and habitat selection of Alpine chamois. Ethol Ecol Evol 22:215–231

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D et al. (2019) vegan: Community Ecology Package. Software http://CRAN.R-project.org/package=vegan

  • O’Neill GA, Aitken SN (2004) Area-based breeding zones to minimize maladaptation. Can J Res 34:695–704

    Article  Google Scholar 

  • Orr HA, Betancourt AJ (2001) Haldane’s sieve and adaptation from the standing genetic variation. Genetics 157:875–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ørsted M, Hoffmann AA, Sverrisdóttir E, Nielsen KL, Kristensen TN (2019) Genomic variation predicts adaptive evolutionary responses better than population bottleneck history. PLOS Genet 15:1–18

    Article  Google Scholar 

  • Papaioannou H, Sgardelis S, Chondropoulos B, Vassilakis D, Kati V, Dimopoulos P (2015) Demographic characteristics, seasonal range and habitat topography of Balkan chamois population in its southernmost limit of its distribution (Giona mountain, Greece). J Nat Hist 49:327–345

    Article  Google Scholar 

  • Park A, Talbot C (2012) Assisted migration: uncertainty, risk and opportunity. For Chron 88:412–419

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Pauli H, Gottfried M, Grabherr G (1996) Effects of climate change on mountain ecosystems - Upward shifting of alpine plants. World Resour Rev 8:382–390

    Google Scholar 

  • Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen I-C et al. (2017) Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355:eaai9214

    Article  PubMed  Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. Plos One 7:e37135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E et al. (2019) IPCC, 2019: Summary for Policymakers. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge University Press, Cambridge, UK and New York, NY, USA, p 3–35

  • Razgour O, Forester B, Taggart JB, Bekaert M, Juste J, Ibáñez C et al. (2019) Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc Natl Acad Sci USA 116:10418–10423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehfeldt GE, Tchebakova NM, Parfenova YI, Wykoff WR, Kuzmina NA, Milyutin LI (2002) Intraspecific responses to climate in Pinus sylvestris: Responses to climate in Pinus Sylvestris. Glob Change Biol 8:912–929

    Article  Google Scholar 

  • Reiner R, Zedrosser A, Zeiler H, Hackländer K, Corlatti L (2021) Forests buffer the climate‐induced decline of body mass in a mountain herbivore. Glob Change Biol. https://doi.org/10.1111/gcb.15711

  • Rellstab C, Zoller S, Walthert L, Lesur I, Pluess AR, Graf R et al. (2016) Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions. Mol Ecol 25:5907–5924

    Article  PubMed  Google Scholar 

  • Riahi K, van Vuuren DP, Kriegler E, Edmonds J, O’Neill BC, Fujimori S et al. (2017) The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob Environ Change 42:153–168

    Article  Google Scholar 

  • Rochat E, Joost S (2019) Spatial Areas of Genotype Probability (SPAG): predicting the spatial distribution of adaptive genetic variants under future climatic conditions. bioRxiv: 2019.12.20.884114

  • Rochat E, Selmoni O, Joost S (2021) Spatial areas of genotype probability: Predicting the spatial distribution of adaptive genetic variants under future climatic conditions. Divers Distrib 27:1076–1090

    Article  Google Scholar 

  • Roffler GH, Amish SJ, Smith S, Cosart T, Kardos M, Schwartz MK et al. (2016) SNP discovery in candidate adaptive genes using exon capture in a free‐ranging alpine ungulate. Mol Ecol Resour 16:1147–1164

    Article  CAS  PubMed  Google Scholar 

  • Roques J (2021) Disentangling the effects of landscape on the functional connectivity of the Northern chamois as assessed by a population genomics approach. MSc Thesis. Université Savoie Mont Blanc, Chambéry, France

  • Rossi L, Tizzani P, Rambozzi L, Moroni B, Meneguz PG (2019) Sanitary Emergencies at the Wild/Domestic Caprines Interface in Europe. Animals 9:922

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruegg K, Bay RA, Anderson EC, Saracco JF, Harrigan RJ, Whitfield M et al. (2018) Ecological genomics predicts climate vulnerability in an endangered southwestern songbird. Ecol Lett 21:1085–1096

    Article  PubMed  Google Scholar 

  • Rughetti M, Festa-Bianchet M (2012) Effects of spring-summer temperature on body mass of chamois. J Mammal 93:1301–1307

    Article  Google Scholar 

  • Savolainen O, Lascoux M, Merilä J (2013) Ecological genomics of local adaptation. Nat Rev Genet 14:807–820

    Article  CAS  PubMed  Google Scholar 

  • Seaborn T, Griffith D, Kliskey A, Caudill CC (2021) Building a bridge between adaptive capacity and adaptive potential to understand responses to environmental change. Glob Change Biol 27:2656–2668

    Article  CAS  Google Scholar 

  • Segelbacher G, Bosse M, Burger P, Galbusera P, Godoy JA, Helsen P et al. (2022) New developments in the field of genomic technologies and their relevance to conservation management. Conserv Genet 23:217–242

    Article  Google Scholar 

  • Seigle-Ferrand J, Marchand P, Morellet N, Gaillard J-M, Hewison AJM, Saïd S et al. (2022) On this side of the fence: Functional responses to linear landscape features shape the home range of large herbivores. J Anim Ecol 91:443–457

    Article  PubMed  Google Scholar 

  • Semenzato P, Cagnacci F, Ossi F, Eccel E, Morellet N, Hewison AJM et al. (2021) Behavioural heat-stress compensation in a cold-adapted ungulate: Forage-mediated responses to warming Alpine summers. Ecol Lett 24:1556–1568

    Article  PubMed  PubMed Central  Google Scholar 

  • Soorae PS (ed.) (2010) Global re-introduction perspectives: Additional case-studies from around the globe. IUCN/ SSC Re-introduction Specialist Group, Abu Dhabi, UAE, p xii + 352

  • Steane DA, Potts BM, McLean E, Prober SM, Stock WD, Vaillancourt RE et al. (2014) Genome-wide scans detect adaptation to aridity in a widespread forest tree species. Mol Ecol 23:2500–2513

    Article  PubMed  Google Scholar 

  • Storey JD, Bass AJ, Dabney A, Robinson D (2023) qvalue: Q-value estimation for false discovery rate control. R package version 2.34.0, https://doi.org/10.18129/B9.bioc.qvalue

  • Thuiller W, Gueguen M, Bison M, Duparc A, Garel M, Loison A et al. (2018) Combining point-process and landscape vegetation models to predict large herbivore distributions in space and time-A case study of Rupicapra rupicapra. Divers Distrib 24:352–362

    Article  Google Scholar 

  • Thuiller W, Guéguen M, Georges D, Bonet R, Chalmandrier L, Garraud L et al. (2014) Are different facets of plant diversity well protected against climate and land cover changes? A test study in the French Alps. Ecography 37:1254–1266

    Article  PubMed  PubMed Central  Google Scholar 

  • van Beest FM, Milner JM (2013) Behavioural responses to thermal conditions affect seasonal mass change in a heat-sensitive northern ungulate. PLOS ONE 8:1–10

  • Visser ME (2008) Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc R Soc B 275:649–659

    Article  PubMed  PubMed Central  Google Scholar 

  • Waldvogel A-M, Feldmeyer B, Rolshausen G, Exposito-Alonso M, Rellstab C, Kofler R et al. (2020) Evolutionary genomics can improve prediction of species’ responses to climate change. Evol Lett 4:4–18

    Article  PubMed  PubMed Central  Google Scholar 

  • White KS, Gregovich DP, Levi T (2018) Projecting the future of an alpine ungulate under climate change scenarios. Glob Change Biol 24:1136–1149

    Article  Google Scholar 

Download references

Acknowledgements

We thank Philippe Auliac, Aurélie Barboiron, Bruno Bassano, François Biollaz, Glauco Camenisch, Marie Canut, Jérôme Cavailhès, Mathieu Garel, Veronika Grünschachner-Berger, Marie Heuret, Ludovic Imberdis, Martina Just, Christine Lettl, Laura Martinelli, Radka Poláková, Elias Pesenti, Davide Righetti, Christine Saint-Andrieux, Federico Tettamanti, Roberto Viganò, Barbora Rolečková, Barbora Zemanová, and IVB Genetic Bank (Czech Academy of Sciences) for providing help to collect samples. We acknowledge Maya Guegen, Julien Renaud, and Flurin Leugger for answering our questions on the bioclimatic variable selection. We thank Delphine Rioux, Nadine Curt Grand-Gaudin, Nathalie Tissot and Sophie Tissot for assistance with ddRADseq library preparation in the laboratory. We warmly thank the associate editor as well as three anonymous reviewers for their insightful comments on the manuscript. The research benefited from the support of AnaBM (USMB) and AEEM (UGA) laboratory facilities and we are grateful to the Roscoff Bioinformatics platform ABiMS (http://abims.sb-roscoff.fr). LP was supported by the Swiss National Science Foundation grant (N° 310030_188550), and GY received funding from the IDEX – Initiatives de Recherche Stratégiques (IRS) – Université Grenoble Alpes.

Author information

Authors and Affiliations

Authors

Contributions

GY and LP coordinated the project. GY and TC designed the study and supervised AH. EB, LC, BC, HCH, and NS contributed to the sample collection. TB and GY performed the bioinformatic analysis. AH analyzed the data with TC and GY. AH, TC, and GY interpreted the results with contribution from TB, CP, and LD. AH, TC and GY wrote the manuscript with comments and editing of all authors. The final version of the manuscript has been read and approved by all authors.

Corresponding author

Correspondence to Glenn Yannic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate editor: Paul Sunnucks.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoste, A., Capblancq, T., Broquet, T. et al. Projection of current and future distribution of adaptive genetic units in an alpine ungulate. Heredity 132, 54–66 (2024). https://doi.org/10.1038/s41437-023-00661-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41437-023-00661-2

Search

Quick links