Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The effects of host quantitative genetic architecture on the gut microbiota composition of Chinook salmon (Oncorhynchus tshawytscha)

Abstract

The microbiota consists of microbes living in or on an organism and has been implicated in host health and function. Environmental and host-related factors were shown to shape host microbiota composition and diversity in many fish species, but the role of host quantitative architecture across populations and among families within a population is not fully characterized. Here, Chinook salmon were used to determine if inter-population differences and additive genetic variation within populations influenced the gut microbiota diversity and composition. Specifically, hybrid stocks of Chinook salmon were created by crossing males from eight populations with eggs from an inbred line created from self-fertilized hermaphrodite salmon. Based on high-throughput sequencing of the 16S rRNA gene, significant gut microbial community diversity and composition differences were found among the hybrid stocks. Furthermore, additive genetic variance components varied among hybrid stocks, indicative of population-specific heritability patterns, suggesting the potential to select for specific gut microbiota composition for aquaculture purposes. Determining the role of host genetics in shaping their gut microbiota has important implications for predicting population responses to environmental changes and will thus impact conservation efforts for declining populations of Chinook salmon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map showing the stock source of the male Chinook salmon used for fertilization of eight pure and hybrid crosses used in this study.
Fig. 2: Relative abundance of the major taxa of the gut microbial community of Chinook salmon.
Fig. 3: Alpha diversity using Chao1, Shannon, and Simpson indices across all hybrid-crosses.
Fig. 4: Principal coordinate analysis (PCoA) plot with the principal coordinates (PCs) explaining the highest percent variance.
Fig. 5: Representation of unique ASVs across the hybrid-crosses used in the study, accompained by their corresponding taxonomic desgination.
Fig. 6: Identification of LEfSe Biomarkers associated with statistically significant ASVs (indicated by FDR P-values of KW sum-rank test) across all hybrid crosses and their associated effect size (represented by LDA scores).
Fig. 7: Histograms showing relative frequencies of candidate gut microbiota taxa across all eight Chinook salmon hybrid crosses.

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non‐parametric multivariate analysis of variance. Austral Ecol 26(1):32–46

    Google Scholar 

  • Anderson MJ (2004) PERMDISP: a FORTRAN computer program for permutational analysis of multivariate dispersions (for any two-factor ANOVA design) using permutation tests. Department of Statistics, University of Auckland, New Zealand, 24.

  • Aykanat T, Heath JW, Dixon B, Heath DD (2012a) Additive, non-additive and maternal effects of cytokine transcription in response to immunostimulation with Vibrio vaccine in Chinook salmon (Oncorhynchus tshawytscha). Immunogenetics 64(9):691–703

    Article  CAS  PubMed  Google Scholar 

  • Aykanat T, Bryden CA, Heath DD (2012b) Sex‐biased genetic component distribution among populations: additive genetic and maternal contributions to phenotypic differences among populations of Chinook salmon. J Evolut Biol 25(4):682–690

    Article  CAS  Google Scholar 

  • Bates JM, Mittge E, Kuhlman J, Baden KN, Cheesman SE, Guillemin K (2006) Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Developmental Biol 297(2):374–386

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Ser B (Methodol) 57(1):289–300

    Google Scholar 

  • Berg G, Rybakova D, Fischer D, Cernava T, Vergès MCC, Charles T et al. (2020) Microbiome definition re-visited: old concepts and new challenges. Microbiome 8(1):1–22

    Google Scholar 

  • Bernatchez L, Dodson JJ (1987) Relationship between bioenergetics and behavior in anadromous fish migrations. Can J Fish Aquat Sci 44(2):399–407

    Article  Google Scholar 

  • Blackwell CN, Picard CR, Foy M (1999) Smolt productivity of off-channel habitat in the Chilliwack River watershed. Watershed Restoration Program.

  • Bokulich NA, Robeson M, Dillon MR (2020) bokulich-lab/RESCRIPt. Zenodo. https://doi.org/10.5281/zenodo.3891931

  • Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Knight R, Caporaso JG et al. (2014a) Individuals’ diet diversity influences gut microbial diversity in two freshwater fish (threespine stickleback and Eurasian perch). Ecol Lett 17(8):979–987

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Org E, Parks B et al. (2014b) Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat Commun 5:4500

    Article  CAS  PubMed  Google Scholar 

  • Bolnick DI, Snowberg LK, Caporaso JG, Lauber C, Knight R, Stutz WE (2014c) Major H istocompatibility C omplex class II b polymorphism influences gut microbiota composition and diversity. Mol Ecol 23(19):4831–45. Oct

    Article  CAS  PubMed  Google Scholar 

  • Booman M, Forster I, Vederas JC, Groman DB, Jones SR (2018) Soybean meal-induced enteritis in Atlantic salmon (Salmo salar) and Chinook salmon (Oncorhynchus tshawytscha) but not in pink salmon (O. gorbuscha). Aquaculture 483:238–243

    Article  CAS  Google Scholar 

  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA et al. (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37(8):852–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle CA, Lavkulich L, Schreier H, Kiss E (1997) Changes in land cover and subsequent effects on Lower Fraser Basin ecosystems from 1827 to 1990. Environ Manag 21(2):185–196

    Article  CAS  Google Scholar 

  • Bradford MJ (1995) Comparative review of Pacific salmon survival rates. Can J Fish Aquat Sci 52(6):1327–1338

    Article  Google Scholar 

  • Brüssow H (2020) The relationship between the host genome, microbiome, and host phenotype. Environ Microbiol 22(4):1170–1173

    Article  PubMed  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat methods 13(7):581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson SM, Seamons TR (2008) A review of quantitative genetic components of fitness in salmonids: implications for adaptation to future change. Evolut Appl 1(2):222–238

    Article  Google Scholar 

  • Cederholm CJ, Kunze MD, Murota T, Sibatani A (1999) Pacific salmon carcasses: essential contributions of nutrients and energy for aquatic and terrestrial ecosystems. Fisheries 24(10):6–15

    Article  Google Scholar 

  • Ciric M, Waite D, Draper J, Jones JB (2019) Characterization of mid-intestinal microbiota of farmed Chinook salmon using 16S rRNA gene metabarcoding. Arch Biol Sci 71(4):577–587

    Article  Google Scholar 

  • Chen C, Huang X, Fang S, Yang H, He M, Zhao Y et al. (2018) Contribution of host genetics to the variation of microbial composition of cecum lumen and feces in pigs. Front Microbiol 9:2626

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ (2018) Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6(1):226

    Article  PubMed  PubMed Central  Google Scholar 

  • De Goffau MC, Lager S, Salter SJ, Wagner J, Kronbichler A, Charnock-Jones DS et al. (2018) Recognizing the reagent microbiome. Nat Microbiol 3(8):851–853

    Article  PubMed  Google Scholar 

  • Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J (2017) Microbiome Analyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic acids Res 45(W1):W180–W188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Difford GF, Plichta DR, Løvendahl P, Lassen J, Noel SJ, Højberg O et al. (2018) Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PloS Genet 14(10):e1007580

    Article  PubMed  PubMed Central  Google Scholar 

  • Dvergedal H, Sandve SR, Angell IL, Klemetsdal G, Rudi K (2020) Association of gut microbiota with metabolism in juvenile Atlantic salmon. Microbiome 8(1):1–8. Dec

    Article  Google Scholar 

  • Dwidar M, Monnappa AK, Mitchell RJ (2012) The dual probiotic and antibiotic nature of Bdellovibrio bacteriovorus. BMB Rep. 45(2):71–78

    Article  CAS  PubMed  Google Scholar 

  • Eschmeyer WN, Fong JD (2015) Species by family/subfamily in the Catalog of Fishes. California Academy of Sciences, San Francisco, CA

    Google Scholar 

  • Evenden AJ, Grayson TH, Gilpin ML, Munn CB (1993) Renibacterium salmoninarum and bacterial kidney disease—the unfinished jigsaw. Annu Rev Fish Dis 3:87–104

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Addison-Wesley Longman Limited; Essex, UK: 1996. Introduction to quantitative genetics.

  • FAO - Global Capture Production 1950-2017. Fisheries and Aquaculture Information and Statistics Branch – accessed on 21/01/2020

  • Fogarty C, Burgess CM, Cotter PD, Cabrera‐Rubio R, Whyte P, Smyth C et al. (2019) Diversity and composition of the gut microbiota of Atlantic salmon (Salmo salar) farmed in Irish waters. J Appl Microbiol 127(3):648–657

    Article  CAS  PubMed  Google Scholar 

  • Galindo-Villegas J, García-Moreno D, de Oliveira S, Meseguer J, Mulero V (2012) Regulation of immunity and disease resistance by commensal microbes and chromatin modifications during zebrafish development. Proc Natl Acad Sci 109(39):E2605–E2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia de Leaniz C, Fleming IA, Einum S, Verspoor E, Jordan WC, Consuegra S et al. (2007) A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation. Biol Rev 82(2):173–211

    Article  CAS  PubMed  Google Scholar 

  • Ghanbari M, Kneifel W, Domig KJ (2015) A new view of the fish gut microbiome: advances from next-generation sequencing. Aquaculture 448:464–475

    Article  CAS  Google Scholar 

  • Gilmour KM, DiBattista JD, Thomas JB (2005) Physiological causes and consequences of social status in salmonid fish. Integr Comp Biol 45(2):263–273

    Article  CAS  PubMed  Google Scholar 

  • Gjedrem T (1983) Genetic variation in quantitative traits and selective breeding in fish and shellfish. Aquaculture 33(1-4):51–72

    Article  Google Scholar 

  • Glover KA, Solberg MF, McGinnity P, Hindar K, Verspoor E, Coulson MW et al. (2017) Half a century of genetic interaction between farmed and wild Atlantic salmon: Status of knowledge and unanswered questions. Fish Fish 18(5):890–927

    Article  Google Scholar 

  • Gomez-Uchida D, Seeb JE, Habicht C, Seeb LW (2012) Allele frequency stability in large, wild exploited populations over multiple generations: insights from Alaska sockeye salmon (Oncorhynchus nerka). Can J Fish Aquat Sci 69(5):916–929

    Article  CAS  Google Scholar 

  • Gordon A, Hannon G (2017) Fastx-toolkit. FASTQ/A short-reads pre-processing tools. 2010. Unpublished available online at: http://hannonlab.cshl.edu/fastx_toolkit.

  • Goodrich JK, Di Rienzi SC, Poole AC, Koren O, Walters WA, Caporaso JG et al. (2014a) Conducting a microbiome study. Cell 158(2):250–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R et al. (2014b) Human genetics shape the gut microbiome. Cell 159(4):789–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C (2016) Genetic determinants of the gut microbiome in UK twins. Cell host microbe 19(5):731–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B, Korasidis N et al. (2018) Microbiome interactions shape host fitness. Proc Natl Acad Sci 115(51):E11951–E11960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ham DG (1996) Patterns of channel change on Chilliwack River, British Columbia (Doctoral dissertation, University of British Columbia).

  • Hammer Ø, Harper DA, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electron 4(1):9

    Google Scholar 

  • Hansen TF (2006) The evolution of genetic architecture. Annu Rev Ecol Evol Syst 37:123–157

    Article  Google Scholar 

  • He X, Chaganti SR, Heath DD (2018) Population-specific responses to interspecific competition in the gut microbiota of two Atlantic Salmon (Salmo salar) populations. Microb Ecol 75(1):140–151

    Article  CAS  PubMed  Google Scholar 

  • Heath DD, Shrimpton JM, Hepburn RI, Jamieson SK, Brode SK, Docker MF (2006) Population structure and divergence using microsatellite and gene locus markers in Chinook salmon (Oncorhynchus tshawytscha) populations. Can J Fish Aquat Sci 63(6):1370–1383

    Article  Google Scholar 

  • Ingerslev HC, Strube ML, von Gersdorff Jørgensen L, Dalsgaard I, Boye M, Madsen L (2014) Diet type dictates the gut microbiota and the immune response against Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss). Fish shellfish Immunol 40(2):624–633

    Article  CAS  PubMed  Google Scholar 

  • Janowitz‐Koch I, Rabe C, Kinzer R, Nelson D, Hess MA, Narum SR (2018) Long‐term evaluation of fitness and demographic effects of a Chinook Salmon supplementation program. Evolut Appl 12(3):456–469

    Article  Google Scholar 

  • Kaltz O, Shykoff JA (1998) Local adaptation in host–parasite systems. Heredity 81(4):361–370

    Article  Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7(12):1225–1241

    Article  Google Scholar 

  • Kim BR, Shin J, Guevarra R, Lee JH, Kim DW, Seol KH et al. (2017) Deciphering diversity indices for a better understanding of microbial communities. J Microbiol Biotechnol 27(12):2089–2093

    Article  PubMed  Google Scholar 

  • Koehler ME, Fresh KL, Beauchamp DA, Cordell JR, Simenstad CA, Seiler DE (2006) Diet and bioenergetics of lake-rearing juvenile Chinook salmon in Lake Washington. Trans Am Fish Soc 135(6):1580–1591

    Article  Google Scholar 

  • Kurilshikov A, Wijmenga C, Fu J, Zhernakova A (2017) Host genetics and gut microbiome: challenges and perspectives. Trends Immunol 38(9):633–647

    Article  CAS  PubMed  Google Scholar 

  • Larsen AM, Mohammed HH, Arias CR (2014) Characterization of the gut microbiota of three commercially valuable warmwater fish species. J Appl Microbiol 116(6):1396–1404

    Article  CAS  PubMed  Google Scholar 

  • Leamy LJ, Kelly SA, Nietfeldt J, Legge RM, Ma F, Hua K et al. (2014) Host genetics and diet, but not immunoglobulin A expression, converge to shape compositional features of the gut microbiome in an advanced intercross population of mice. Genome Biol 15(12):552

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenth R, Singmann H, Love J, Buerkner P, Herve P (2018) Emmeans: Estimated marginal means, aka least-squares means R package version 1.1

  • Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H (2014) UpSet: visualization of intersecting sets. IEEE Trans Vis computer Graph 20(12):1983–1992

    Article  Google Scholar 

  • Li T, Long M, Gatesoupe FJ, Zhang Q, Li A, Gong X (2015) Comparative analysis of the intestinal bacterial communities in different species of carp by pyrosequencing. Microb Ecol 69(1):25–36

    Article  CAS  PubMed  Google Scholar 

  • Li W, Liu J, Tan H, Yang C, Ren L, Liu Q et al. (2018) Genetic Effects on the Gut Microbiota Assemblages of Hybrid Fish From Parents With Different Feeding Habits. Front Microbiol 9:2972. 4

    Article  PubMed  PubMed Central  Google Scholar 

  • Llewellyn MS, Boutin S, Hoseinifar SH, Derome N (2014) Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front Microbiol 5:207

    Article  PubMed  PubMed Central  Google Scholar 

  • Llewellyn MS, McGinnity P, Dionne M, Letourneau J, Thonier F, Carvalho GR et al. (2016) The biogeography of the Atlantic salmon (Salmo salar) gut microbiome. ISME J 10(5):1280–1284

    Article  PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sunderland, MA: Sinauer; Jan.

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12

    Article  Google Scholar 

  • Metcalfe NB, Valdimarsson SK, Morgan IJ (2003) The relative roles of domestication, rearing environment, prior residence and body size in deciding territorial contests between hatchery and wild juvenile salmon. J Appl Ecol 40(3):535–544

    Article  Google Scholar 

  • Milligan-Myhre K, Small CM, Mittge EK, Agarwal M, Currey M, Cresko WA et al. (2016) Innate immune responses to gut microbiota differ between oceanic and freshwater threespine stickleback populations. Dis Models Mechanisms 9(2):187–198

    CAS  Google Scholar 

  • Minich JJ, Poore GD, Jantawongsri K, Johnston C, Bowie K, Bowman J et al. (2020) Microbial ecology of Atlantic salmon (Salmo salar) hatcheries: impacts of the built environment on fish mucosal microbiota. Appl Environ Microbiol 86(12):e00411–e00420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narum SR, Schultz TL, Van Doornik DM, Teel D (2008) Localized genetic structure persists in wild populations of Chinook salmon in the John Day River despite gene flow from outside sources. Trans Am Fish Soc 137(6):1650–1656

    Article  Google Scholar 

  • Navarrete P, Magne F, Araneda C, Fuentes P, Barros L, Opazo R et al. (2012) PCR-TTGE analysis of 16S rRNA from rainbow trout (Oncorhynchus mykiss) gut microbiota reveals host-specific communities of active bacteria. PloS one 7(2):e31335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak SK (2010) Role of gastrointestinal microbiota in fish. Aquac Res 41(11):1553–1573

    Article  Google Scholar 

  • Nelson JS, Grande TC, Wilson MV (2016) Fishes of the World. John Wiley and Sons.

  • Nikouli E, Meziti A, Antonopoulou E, Mente E, Kormas KA (2018) Gut bacterial communities in geographically distant populations of farmed sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax). Microorganisms 6(3):92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikouli E, Meziti A, Antonopoulou E, Mente E, Kormas KA (2019) Host-Associated Bacterial Succession during the Early Embryonic Stages and First Feeding in Farmed Gilthead Sea Bream (Sparus aurata). Genes 10(7):483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikouli E, Meziti A, Smeti E, Antonopoulou E, Mente E, Kormas KA (2020) Gut Microbiota of Five Sympatrically Farmed Marine Fish Species in the Aegean Sea. Microbial Ecology 1-11.

  • Oh S, Choi D, Cha CJ (2019) Ecological processes underpinning microbial community structure during exposure to subinhibitory level of triclosan. Sci Rep. 9(1):1–12

    Google Scholar 

  • Ohlberger J, Ward EJ, Schindler DE, Lewis B (2018) Demographic changes in Chinook salmon across the Northeast Pacific Ocean. Fish Fish 19(3):533–546

    Article  Google Scholar 

  • Palstra FP, Ruzzante DE (2010) A temporal perspective on population structure and gene flow in Atlantic salmon (Salmo salar) in Newfoundland, Canada. Can J Fish Aquat Sci 67(2):225–242

    Article  Google Scholar 

  • Panteli N, Mastoraki M, Nikouli E, Lazarina M, Antonopoulou E, Kormas KA (2020) Imprinting statistically sound conclusions for gut microbiota in comparative animal studies: A case study with diet and teleost fishes. Comp Biochem Physiol Part D: Genomics Proteom 36:100738

    CAS  Google Scholar 

  • Parshukov AN, Kashinskaya EN, Simonov EP, Hlunov OV, Izvekova GI, Andree KB et al. (2019) Variations of the intestinal gut microbiota of farmed rainbow trout, Oncorhynchus mykiss (Walbaum), depending on the infection status of the fish. J Appl Microbiol 127(2):379–395

    Article  CAS  PubMed  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al. (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids Res 41(D1):D590–D596

    Article  PubMed  PubMed Central  Google Scholar 

  • Quinn TP (2018) The behavior and ecology of Pacific salmon and trout. University of Washington press.

  • Quinn TP, Unwin MJ, Kinnison MT (2000) Evolution of temporal isolation in the wild: genetic divergence in timing of migration and breeding by introduced chinook salmon populations. Evolution 54(4):1372–1385

    CAS  PubMed  Google Scholar 

  • R Core Team (2016) R development core team. RA Lang. Environ Stat Comput 55(265), 275–286

  • Ren T, Boutin S, Humphries MM, Dantzer B, Gorrell JC, Coltman DW et al. (2017) Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels. Microbiome 5(1):163

    Article  PubMed  PubMed Central  Google Scholar 

  • Riiser ES, Haverkamp TH, Varadharajan S, Borgan Ø, Jakobsen KS, Jentoft S et al. (2020) Metagenomic shotgun analyses reveal complex patterns of intra-and interspecific variation in the intestinal microbiomes of codfishes. Appl Environ Microbiol 86(6):e02788–19. Mar 2

    Article  PubMed  PubMed Central  Google Scholar 

  • Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K et al. (2011) Evidence for a core gut microbiota in the zebrafish. ISME J 5(10):1595–1608. https://doi.org/10.1038/ismej.2011.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero J, Ringø E, Merrifield DL (2014) The gut microbiota of fish. Aquaculture nutrition: Gut health, probiotics and prebiotics 75-100.

  • Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K et al. (2017) Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171(5):1015–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D et al. (2018) Environment dominates over host genetics in shaping human gut microbiota. Nature 555(7695):210–215

    Article  CAS  PubMed  Google Scholar 

  • Rounsefell GA (1958) Anadromy in North American Salmonidae. US Government Printing Office.

  • Savolainen O, Lascoux M, Merilä J (2013) Ecological genomics of local adaptation. Nat Rev Genet 14(11):807–820

    Article  CAS  PubMed  Google Scholar 

  • Schmidt V, Amaral-Zettler L, Davidson J, Summerfelt S, Good C (2016) Influence of fishmeal-free diets on microbial communities in Atlantic salmon (Salmo salar) recirculation aquaculture systems. Appl Environ Microbiol 82(15):4470–4481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS et al. (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):1–18

    Article  Google Scholar 

  • Semova I, Carten JD, Stombaugh J, Mackey LC, Knight R, Farber SA et al. (2012) Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell host microbe 12(3):277–288

    Article  CAS  PubMed  Google Scholar 

  • Semeniuk CA, Capelle PM, Dender MG, Devlin R, Dixon B, Drown J et al. (2019) Domestic-wild hybridization to improve aquaculture performance in Chinook salmon. Aquaculture 511:734255

    Article  Google Scholar 

  • Smith CC, Snowberg LK, Caporaso JG, Knight R, Bolnick DI (2015) Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J 9(11):2515–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snijders AM, Langley SA, Kim YM, Brislawn CJ, Noecker C, Zink EM et al. (2016) Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome. Nat Microbiol 2(2):1–8

    Article  Google Scholar 

  • Soltani M, Ghosh K, Hoseinifar SH, Kumar V, Lymbery AJ, Roy S et al. (2019) Genus bacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Rev Fish Sci Aquac 27(3):331–379

    Article  Google Scholar 

  • Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9(4):279–290

    Article  CAS  PubMed  Google Scholar 

  • Sullam KE, Rubin BE, Dalton CM, Kilham SS, Flecker AS, Russell JA (2015) Divergence across diet, time and populations rules out parallel evolution in the gut microbiomes of Trinidadian guppies. ISME J 9(7):1508–1522

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki TA (2017) Links between natural variation in the microbiome and host fitness in wild mammals. Integr Comp Biol 57(4):756–769

    Article  CAS  PubMed  Google Scholar 

  • Toews SD, Wellband KW, Dixon B, Heath DD (2019) Variation in juvenile Chinook salmon (Oncorhynchus tshawytscha) transcription profiles among and within eight population crosses from British Columbia, Canada. Mol Ecol 28(8):1890–1903

    Article  CAS  PubMed  Google Scholar 

  • Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489(7415):242–249

    Article  CAS  PubMed  Google Scholar 

  • Unwin MJ, Quinn TP, Kinnison MT, Boustead NC (2000) Divergence in juvenile growth and life history in two recently colonized and partially isolated chinook salmon populations. J Fish Biol 57(4):943–960

    Article  Google Scholar 

  • Vähä JP, Erkinaro J, Niemelä E, Primmer CR (2008) Temporally stable genetic structure and low migration in an Atlantic salmon population complex: implications for conservation and management. Evolut Appl 1(1):137–154

    Article  Google Scholar 

  • van Oppen MJ, Oliver JK, Putnam HM, Gates RD (2015) Building coral reef resilience through assisted evolution. Proc Natl Acad Sci 112(8):2307–2313

    Article  PubMed  PubMed Central  Google Scholar 

  • Villasante A, Ramírez C, Catalán N, Opazo R, Dantagnan P, Romero J (2019) Effect of dietary carbohydrate-to-protein ratio on gut microbiota in atlantic salmon (Salmo salar). Animals 9(3):89

    Article  PubMed  PubMed Central  Google Scholar 

  • Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era—concepts and misconceptions. Nat Rev Genet 9(4):255–266

    Article  CAS  PubMed  Google Scholar 

  • Waples RS, Teel DJ, Myers JM, Marshall AR (2004) Life‐history divergence in Chinook salmon: historic contingency and parallel evolution. Evolution 58(2):386–403

    PubMed  Google Scholar 

  • Waples RS, Naish KA, Primmer CR (2019) Conservation and Management of Salmon in the Age of Genomics. Annual review of animal biosciences 8.

  • Webster TMU, Consuegra S, Hitchings M, de Leaniz CG (2018) Interpopulation variation in the Atlantic salmon microbiome reflects environmental and genetic diversity. Appl Environ Microbiol 84(16):e00691–18

    Google Scholar 

  • Webster TMU, Rodriguez‐Barreto D, Castaldo G, Gough P, Consuegra S, Garcia de Leaniz C (2020) Environmental plasticity and colonisation history in the Atlantic salmon microbiome: a translocation experiment. Mol Ecol Mar 29(5):886–898

    Article  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer

    Book  Google Scholar 

  • Willems A (2014) The family Comamonadaceae. The prokaryotes: Alphaproteobacteria and Betaproteobacteria. The Prokaryotes. Springer, Berlin

    Google Scholar 

  • Wong S, Rawls JF (2012) Intestinal microbiota composition in fishes is influenced by host ecology and environment. Mol Ecol 21(13):3100–3102

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong S, Waldrop T, Summerfelt S, Davidson J, Barrows F, Kenney PB et al. (2013) Aquacultured rainbow trout (Oncorhynchus mykiss) possess a large core intestinal microbiota that is resistant to variation in diet and rearing density. Appl Environ Microbiol 79(16):4974–4984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wringe BF, Jeffery NW, Stanley RR, Hamilton LC, Anderson EC, Fleming IA et al. (2018) Extensive hybridization following a large escape of domesticated Atlantic salmon in the Northwest Atlantic. Commun Biol 1(1):1–9

    Article  Google Scholar 

  • Wrobel A, Leo JC, Linke D (2019) Overcoming fish defences: the virulence factors of Yersinia ruckeri. Genes 10(9):700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu SG, Tian JY, Gatesoupe FJ, Li WX, Zou H, Yang BJ et al. (2013) Intestinal microbiota of gibel carp (Carassius auratus gibelio) and its origin as revealed by 454 pyrosequencing. World J Microbiol Biotechnol 29(9):1585–1595

    Article  PubMed  Google Scholar 

  • Xiao F, Zhu W, Yu Y et al. (2021) Host development overwhelms environmental dispersal in governing the ecological succession of zebrafish gut microbiota. npj Biofilms Microbiomes 7:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M et al. (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye L, Amberg J, Chapman D, Gaikowski M, Liu WT (2014) Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. ISME J 8(3):541–551

    Article  CAS  PubMed  Google Scholar 

  • Yeaman S, Otto SP (2011) Establishment and maintenance of adaptive genetic divergence under migration, selection, and drift. Evol: Int J Org Evol 65(7):2123–2129

    Article  Google Scholar 

  • Yilmaz P et al. (2014) The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res 42(D1):D643–D648

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is part of a larger cooperative project that involved the dedicated work of many researchers, and for their assistance in the field, we would like to acknowledge the following: N. Bernier, J. Camaj, E. Deck, A. Forest, X. He, K. O’Hagan-Wang, J. Drown, J.W. Heath, V.A. Heath, and J. Smit. We would like to thank Yellow Island Aquaculture, Ltd. for their invaluable logistical, financial, and technical support. This study was funded by a Natural Science and Engineering Research Council (NSERC) of Canada Strategic Partnership Grant and an NSERC Discovery Grant to DDH.

Author information

Authors and Affiliations

Authors

Contributions

DDH conceived and planned the experiments. DDH and SRC carried out field work. MZ carried out the wet laboratory sample preparations and experiments. All authors contributed to selecting the models and the computational framework for the data analysis. MZ, SRC, and DDH contributed to the interpretation of the results. MZ took the lead in performing the research, analyzing data and writing the manuscript. All authors provided critical feedback and helped shape the research, analysis, and manuscript.

Corresponding authors

Correspondence to Subba Rao Chaganti or Daniel D. Heath.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate editor: Bastiaan Star.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziab, M., Chaganti, S.R. & Heath, D.D. The effects of host quantitative genetic architecture on the gut microbiota composition of Chinook salmon (Oncorhynchus tshawytscha). Heredity 131, 43–55 (2023). https://doi.org/10.1038/s41437-023-00620-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41437-023-00620-x

Search

Quick links