Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MiR-140-5p inhibits oxidized low-density lipoprotein-induced oxidative stress and cell apoptosis via targeting toll-like receptor 4

Abstract

Critical roles of several microRNAs have been implicated in atherosclerosis (AS). In this study, we studied the functional role of miR-140-5p in AS. An AS model was constructed in THP-1 macrophages challenged with oxidized low-density lipoprotein (ox-LDL). The expression of miR-140-5p was up- or downregulated with corresponding mimic or inhibitor regents. Our experiments showed that the levels of cell apoptosis and fatty acid accumulation were decreased in THP-1 macrophages treated with miR-140-5p mimic, whereas increased in those treated with miR-140-5p inhibitor. The levels of ROS (reactive oxygen species), MDA (malondialdehyde), TC (Triglyceride), and TG (total cholesterol) were reduced and the level of SOD (superoxide dismutase) was improved in miR-140-5p overexpressed THP-1 macrophages, which can be reversed with miR-140-5p depletion. Moreover, through bioinformatics analysis, we found toll-like receptor 4 (TLR4) was a potential target of miR-140-5p. Luciferase reporter assay demonstrated that miR-140-5p regulated TLR4 expression via binding 3′UTR of TLR4 in THP-1 macrophages. In ox-LDL challenged THP-1 macrophages, the expression of TLR4 was decreased after miR-140-5p mimic transfection, whereas improved after treatment with miR-140-5p inhibitors. As a conclusion, miR-140-5p can participate in inhibiting ox-LDL-induced oxidative stress and cell apoptosis via targeting TLR4 in macrophage-mediated ox-LDL induced AS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The cell apoptosis and miR-140-5p expression in THP-1 macrophages after challenging with ox-LDL.
Fig. 2: Influence of miR-140-5p on the development of ox-LDL-induced macrophages derived foam cells.
Fig. 3: Effect of miR-140-5p on oxidative stress and apoptosis caused by ox-LDL in THP-1 macrophages.
Fig. 4: The proliferation of HUVSMC cells; TLR4 as a target of miR-140-5p.
Fig. 5: In AS, miR-140-5p expression was downregulated.

Similar content being viewed by others

Data availability

The data sets used in this study are available from the corresponding author on reasonable request.

References

  1. Aronow HD, Beckman JA. Parsing atherosclerosis: the unnatural history of peripheral artery disease. Circulation. 2016;134:438–40.

    Article  Google Scholar 

  2. Willeit P, Skroblin P, Kiechl S, Fernandez-Hernando C, Mayr M. Liver microRNAs: potential mediators and biomarkers for metabolic and cardiovascular disease? Eur Heart J. 2016;37:3260–6.

    Article  CAS  Google Scholar 

  3. Damen M, Popa CD, Netea MG, Dinarello CA, Joosten LAB. Interleukin-32 in chronic inflammatory conditions is associated with a higher risk of cardiovascular diseases. Atherosclerosis. 2017;264:83–91.

    Article  CAS  Google Scholar 

  4. Li J, Lin S, Vanhoutte PM, Woo CW, Xu A. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe-/-Mice. Circulation. 2016;133:2434–46.

    Article  CAS  Google Scholar 

  5. Pedra SR, Pedra CA, Abizaid AA, Braga SL, Staico R, Arrieta R, et al. Intracoronary ultrasound assessment late after the arterial switch operation for transposition of the great arteries. J Am Coll Cardiol. 2005;45:2061–8.

    Article  Google Scholar 

  6. Tounian P, Aggoun Y, Dubern B, Varille V, Guy-Grand B, Sidi D, et al. Presence of increased stiffness of the common carotid artery and endothelial dysfunction in severely obese children: a prospective study. Lancet. 2001;358:1400–4.

    Article  CAS  Google Scholar 

  7. Matsumoto T, Takashima H, Ohira N, Tarutani Y, Yasuda Y, Yamane T, et al. Plasma level of oxidized low-density lipoprotein is an independent determinant of coronary macrovasomotor and microvasomotor responses induced by bradykinin. J Am Coll Cardiol. 2004;44:451–7.

    Article  CAS  Google Scholar 

  8. Mertens A, Holvoet P. Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB. 2001;15:2073–84.

    Article  CAS  Google Scholar 

  9. Rietzschel ER, Langlois M, De Buyzere ML, Segers P, De Bacquer D, Bekaert S, et al. Oxidized low-density lipoprotein cholesterol is associated with decreases in cardiac function independent of vascular alterations. Hypertension. 2008;52:535–41.

    Article  CAS  Google Scholar 

  10. Niemann B, Rohrbach S, Miller MR, Newby DE, Fuster V, Kovacic JC. Oxidative stress and cardiovascular risk: obesity, diabetes, smoking, and pollution: Part 3 of a 3-Part series. J Am Coll Cardiol. 2017;70:230–51.

    Article  CAS  Google Scholar 

  11. Binder CJ, Horkko S, Dewan A, Chang MK, Kieu EP, Goodyear CS, et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nature Med. 2003;9:736–43.

    Article  CAS  Google Scholar 

  12. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell. 1998;93:229–40.

    Article  CAS  Google Scholar 

  13. Luo Y, Duan H, Qian Y, Feng L, Wu Z, Wang F, et al. Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Res. 2017;27:352–72.

    Article  CAS  Google Scholar 

  14. Yang L, Yang JB, Chen J, Yu GY, Zhou P, Lei L, et al. Enhancement of human ACAT1 gene expression to promote the macrophage-derived foam cell formation by dexamethasone. Cell Res. 2004;14:315–23.

    Article  CAS  Google Scholar 

  15. Rahaman SO, Lennon DJ, Febbraio M, Podrez EA, Hazen SL, Silverstein RL. A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab. 2006;4:211–21.

    Article  CAS  Google Scholar 

  16. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nature Immunol. 2010;11:155–61.

    Article  CAS  Google Scholar 

  17. Forstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circulation Res. 2017;120:713–35.

    Article  Google Scholar 

  18. Kim YW, Byzova TV. Oxidative stress in angiogenesis and vascular disease. Blood. 2014;123:625–31.

    Article  CAS  Google Scholar 

  19. Shah MS, Brownlee M. Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ Res. 2016;118:1808–29.

    Article  CAS  Google Scholar 

  20. Liang C, Wang X, Hu J, Lian X, Zhu T, Zhang H, et al. PTPRO promotes oxidized low-density lipoprotein induced oxidative stress and cell apoptosis through toll-like receptor 4/nuclear factor kappaB pathway. Cell Physiol Biochem. 2017;42:495–505.

    Article  CAS  Google Scholar 

  21. Tang ZH, Peng J, Ren Z, Yang J, Li TT, Li TH, et al. New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-kappaB pathway. Atherosclerosis. 2017;262:113–22.

    Article  CAS  Google Scholar 

  22. Zuniga MC, Raghuraman G, Hitchner E, Weyand C, Robinson W, Zhou W. PKC-epsilon and TLR4 synergistically regulate resistin-mediated inflammation in human macrophages. Atherosclerosis. 2017;259:51–59.

    Article  CAS  Google Scholar 

  23. Heumuller AW, Dimmeler S. Circular RNA Control of vascular smooth muscle cell functions. Circ Res. 2019;124:456–8.

    Article  Google Scholar 

  24. Kong P, Yu Y, Wang L, Dou YQ, Zhang XH, Cui Y, et al. circ-Sirt1 controls NF-kappaB activation via sequence-specific interaction and enhancement of SIRT1 expression by binding to miR-132/212 in vascular smooth muscle cells. Nucleic Acids Res. 2019;47:3580–93.

    Article  CAS  Google Scholar 

  25. Lucas T, Bonauer A, Dimmeler S. RNA therapeutics in cardiovascular disease. Circ Res. 2018;123:205–20.

    Article  CAS  Google Scholar 

  26. Al-Modawi RN, Brinchmann JE, Karlsen TA. Multi-pathway protective effects of microRNAs on human chondrocytes in an in vitro model of osteoarthritis. Mol Ther Nucleic Acids. 2019;17:776–90.

    Article  CAS  Google Scholar 

  27. Lindsay SL, Johnstone SA, McGrath MA, Mallinson D, Barnett SC. Comparative miRNA-based fingerprinting reveals biological differences in human olfactory mucosa- and bone-marrow-derived mesenchymal stromal cells. Stem Cell Rep. 2016;6:729–42.

    Article  CAS  Google Scholar 

  28. Nagy B,Jr, Nagy B, Fila L, Clarke LA, Gonczy F, Bede O, et al. Human epididymis protein 4: a novel serum inflammatory biomarker in cystic fibrosis. Chest. 2016;150:661–72.

    Article  Google Scholar 

  29. Papathanasiou I, Balis C, Trachana V, Mourmoura E, Tsezou A. The synergistic function of miR-140-5p and miR-146a on TLR4-mediated cytokine secretion in osteoarthritic chondrocytes. Biochem Biophys Res Commun. 2020;522:783–91.

    Article  CAS  Google Scholar 

  30. Halloran BG, Grange JJ, So BJ, Baxter BT. Macrophage products inhibit human aortic smooth muscle cell proliferation and alter 1 alpha (I) procollagen expression. Ann Vasc Surg. 1997;11:80–84.

    Article  CAS  Google Scholar 

  31. Tintut Y, Patel J, Territo M, Saini T, Parhami F, Demer LL. Monocyte/macrophage regulation of vascular calcification in vitro. Circulation. 2002;105:650–5.

    Article  CAS  Google Scholar 

  32. Freigang S, Ampenberger F, Weiss A, Kanneganti TD, Iwakura Y, Hersberger M, et al. Fatty acid-induced mitochondrial uncoupling elicits inflammasome-independent IL-1alpha and sterile vascular inflammation in atherosclerosis. Nature Immunol. 2013;14:1045–53.

    Article  CAS  Google Scholar 

  33. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nature Rev Immunol. 2013;13:709–21.

    Article  CAS  Google Scholar 

  34. Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS, et al. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab. 2012;15:545–53.

    Article  CAS  Google Scholar 

  35. Subramanian M, Thorp E, Tabas I. Identification of a non-growth factor role for GM-CSF in advanced atherosclerosis: promotion of macrophage apoptosis and plaque necrosis through IL-23 signaling. Circulation Res. 2015;116:e13–24.

    Article  CAS  Google Scholar 

  36. Han J, Tong HQ, Cheng SY, Yang L, Chen HY, Chen JD, et al. Effect of Kangshuanyihao formula on the inflammatory reaction and SIRT1/TLR4/NF-kappaB signaling pathway in endothelial injury. Evid Based Complement Alternat Med. 2017;2017:9019765.

    PubMed  PubMed Central  Google Scholar 

  37. Kiechl S, Lorenz E, Reindl M, Wiedermann CJ, Oberhollenzer F, Bonora E, et al. Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med. 2002;347:185–92.

    Article  CAS  Google Scholar 

  38. Xie X, Shi X, Liu M. The roles of TLR gene polymorphisms in atherosclerosis: a systematic review and meta-analysis of 35,317 subjects. Scand J Immunol. 2017;86:50–58.

    Article  CAS  Google Scholar 

  39. Yang IA, Holloway JW, Ye S, Southampton Atherosclerosis Study G. TLR4 Asp299Gly polymorphism is not associated with coronary artery stenosis. Atherosclerosis. 2003;170:187–90.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Outstanding Youth Training Project from Shanghai Ninth People’s Hospital [Grant No. jyyq 08201607], the National Natural Science Foundation of China [Grant Nos. 81400802 and 81670735], and Clinical Research Project of Multi-Disciplinary Team, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine [Grant No. 201701022].

Author information

Authors and Affiliations

Authors

Contributions

FC designed and supervised the study; HL, ZM, JZ and MS performed the experiments; HL and ZM collected and analyzed the data; JZ and MS supported administration, technique, and materials; HL prepared the paper; FC revised the paper; All authors read and approved the final paper.

Corresponding author

Correspondence to Fengling Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Mao, Z., Zhu, J. et al. MiR-140-5p inhibits oxidized low-density lipoprotein-induced oxidative stress and cell apoptosis via targeting toll-like receptor 4. Gene Ther 28, 413–421 (2021). https://doi.org/10.1038/s41434-020-0139-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-020-0139-7

This article is cited by

Search

Quick links