Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nutrition during the early life cycle

Gestational weight gain and visceral adiposity in adult offspring: Is there a link with the fecal abundance of Acidaminococcus genus?

Abstract

Intrauterine environment can influence the offspring’s body adiposity whose distribution affect the cardiometabolic risk. Underlying mechanisms may involve the gut microbiome. We investigated associations of gestational weight gain with the adult offspring’s gut microbiota, body adiposity and related parameters in participants of the Nutritionists’ Health Study.

Methods

This cross-sectional analysis included 114 women who had early life and clinical data, body composition, and biological samples collected. The structure of fecal microbiota was analyzed targeting the V4 region of the 16 S rRNA gene. Beta diversity was calculated by PCoA and PERMANOVA used to test the impact of categorical variables into the diversity. Bacterial clusters were identified based on the Jensen-Shannon divergence matrix and Calinski–Harabasz index. Correlations were tested by Spearman coefficient.

Results

Median age was 28 (IQR 24–31) years and BMI 24.5 (IQR 21.4–28.0) kg/m2. Fifty-eight participants were assigned to a profile driven by Prevotella and 56 to another driven by Blautia. Visceral adipose tissue was correlated to abundance of Acidaminococcus genus considering the entire sample (r = 0.37; p < 0.001) and the profiles (Blautia: r = 0.35, p = 0.009, and Prevotella: r = 0.38, p = 0.006). In Blautia-driven profile, the same genus was also correlated to maternal gestational weight gain (r = 0.38, p = 0.006).

Conclusions

Association of Acidaminococcus with gestational weight gain could reinforce the relevance with mothers’ nutritional status for gut colonization at the beginning of life. Whether Acidaminococcus abundance could be a marker for central distribution of adiposity in young women requires further investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Six most abundant phyla in the NutriHS sample studied.
Fig. 2: Bacterial clusters identified in the NutriHS participants.

Similar content being viewed by others

Data availability

The data that support the results of our study are openly available in Europeia Nucleotide Archive at https://www.ebi.ac.uk/ena/browser/home, with the reference number PRJEB49536. We confirm that the findings from our analyses are available within the article.

References

  1. GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27.

    Article  Google Scholar 

  2. Lucas A, Fewtrell MS, Cole TJ. Fetal origins of adult disease—the hypothesis revisited. BMJ. 1999;319:245–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Barnes MD, Heaton TL, Goates MC, Packer JM. Intersystem implications of the developmental origins of health and disease: advancing health promotion in the 21st century. Healthcare. 2016;4:45.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sharp GC, Lawlor DA. Paternal impact on the life course development of obesity and type 2 diabetes in the offspring. Diabetologia. 2019;62:1802–10.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hsieh CJ, Wang PW, Chen TY. The relationship between regional abdominal fat distribution and both insulin resistance and subclinical chronic inflammation in non-diabetic adults. Diabetol Metab Syndr. 2014;6:49.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chait A, den Hartigh LJ. Adipose tissue distribution. inflammation and its metabolic consequences including diabetes and cardiovascular disease. Front Cardiovasc Med. 2020;7:22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Yao D, Chang Q, Wu QJ, Gao SY, Zhao H, Liu YS, et al. Relationship between maternal central obesity and the risk of gestational diabetes mellitus: A systematic review and meta-analysis of cohort studies. J Diabetes Res. 2020;2020:6303820.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Catalano PM, Tyzbir ED, Roman NM, Amini SB, Sims EA. Longitudinal changes in insulin release and insulin resistance in nonobese pregnant women. Am J Obstet Gynecol. 1991;1656:1667–72.

    Article  Google Scholar 

  9. Di Cianni G, Miccoli R, Volpe L, Lencioni C, Del, Prato S. Intermediate metabolism in normal pregnancy and in gestational diabetes. Diabetes Metab Res Rev. 2003;19:259–70.

    Article  PubMed  Google Scholar 

  10. Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH. The pathophysiology of gestational diabetes mellitus. Int J Mol Sci. 2018;19:3342.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Garmendia ML, Corvalan C, Uauy R. Assessing the public health impact of developmental origins of health and disease (DOHaD) nutrition interventions. Ann Nutr Metab. 2014;64:226–30.

    Article  PubMed  CAS  Google Scholar 

  12. Catalano PM. Obesity and pregnancy-the propagation of a viscous cycle? J Clin Endocrinol Metab. 2003;88:3505–6.

    Article  PubMed  Google Scholar 

  13. Reynolds RM, Osmond C, Phillips DI, Godfrey KM. Maternal BMI, parity, and pregnancy weight gain: influences on offspring adiposity in young adulthood. J Clin Endocrinol Metab. 2010;95:5365–9.

    Article  PubMed  CAS  Google Scholar 

  14. Lau EY, Liu J, Archer E, McDonald SM, Liu J. Maternal weight gain in pregnancy and risk of obesity among offspring: A systematic review. J Obes. 2014;2014:524939.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Castillo H, Santos IS, Matijasevich A. Relationship between maternal pre-pregnancy body mass index, gestational weight gain and childhood fatness at 6-7 years by air displacement plethysmography. Matern Child Nutr. 2015;11:606–17.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tan HC, Roberts J, Catov J, Krishnamurthy R, Shypailo R, Bacha F. Mother’s pre-pregnancy BMI is an important determinant of adverse cardiometabolic risk in childhood. Pediatr Diabetes. 2015;16:419–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Cadenas-Sanchez C, Henriksson P, Henriksson H, Delisle Nyström C, Pomeroy J, Ruiz JR, et al. Parental body mass index and its association with body composition, physical fitness and lifestyle factors in their 4-year-old children: Results from the MINISTOP trial. Eur J Clin Nutr. 2017;71:1200–5.

    Article  PubMed  CAS  Google Scholar 

  18. Chaparro MP, Koupil I, Byberg L. Maternal pre-pregnancy BMI and offspring body composition in young adulthood: the modifying role of offspring sex and birth order. Public Health Nutr. 2017;20:3084–9.

    Article  PubMed  Google Scholar 

  19. Dunford AR, Sangster JM. Maternal and paternal periconceptional nutrition as an indicator of offspring metabolic syndrome risk in later life through epigenetic imprinting: A systematic review. Diabetes Metab Syndr. 2017;11:S655–S662.

    Article  PubMed  Google Scholar 

  20. Agarwal P, Morriseau TS, Kereliuk SM, Doucette CA, Wicklow BA, Dolinsky VW. Maternal obesity, diabetes during pregnancy and epigenetic mechanisms that influence the developmental origins of cardiometabolic disease in the offspring. Crit Rev Clin Lab Sci. 2018;55:71–101.

    Article  PubMed  CAS  Google Scholar 

  21. Portha B, Grandjean V, Movassat J. Mother or Father: Who is in the front line? Mechanisms underlying the non-genomic transmission of obesity/diabetes via the maternal or the paternal line. Nutrients. 2019;11:233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Dreisbach C, Prescott S, Alhusen J. Influence of maternal prepregnancy obesity and excessive gestational weight gain on maternal and child gastrointestinal microbiome composition: a systematic review. Biol Res Nurs. 2020;22:114–25.

    Article  PubMed  Google Scholar 

  23. Martin R, Makino H, Cetinyurek YA, Ben-Amor K, Roelofs M, Ishikawa E, et al. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS One. 2016;11:e0158498.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Le Doare K, Holder B, Bassett A, Pannaraj PS. Mother’s milk: a purposeful contribution to the development of the infant microbiota and immunity. Front Immunol. 2018;9:361.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gérard P. Gut microbiota and obesity. Cell Mol Life Sci. 2016;73:147–62.

    Article  PubMed  Google Scholar 

  26. Bouter KE, van Raalte DH, Groen AK, Nieuwdorp M. Role of the gut microbiome in the pathogenesis of obesity and obesity-related metabolic dysfunction. Gastroenterology. 2017;152:1671–8.

    Article  PubMed  CAS  Google Scholar 

  27. Meijnikman AS, Gerdes VE, Nieuwdorp M, Herrema H. Evaluating causality of gut microbiota in obesity and diabetes in humans. Endocr Rev. 2018;39:133–53.

    Article  PubMed  Google Scholar 

  28. Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19:55–71.

    Article  PubMed  CAS  Google Scholar 

  29. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: Human gut microbes associated with obesity. Nature. 2006;444:1022–3.

    Article  PubMed  CAS  Google Scholar 

  30. Ley RE. Obesity and the human microbiome. Curr Opin Gastroenterol. 2010;26:5–11.

    Article  PubMed  Google Scholar 

  31. Castaner O, Goday A, Park YM, Lee SH, Magkos F, Shiow STE, et al. The gut microbiome profile in obesity: A systematic review. Int J Endocrinol. 2018;2018:4095789.

    PubMed  PubMed Central  Google Scholar 

  32. John GK, Mullin GE. The gut microbiome and obesity. Curr Oncol Rep. 2016;18:45.

    Article  PubMed  Google Scholar 

  33. Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, et al. The Firmicutes/Bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? Nutrients. 2020;12:1474.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107:14691–6.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Franco de Moraes AC, Fernandes GR, da Silva IT, Almeida-Pititto B, Gomes EP, Pereira AD, et al. Enterotype may drive the dietary-associated cardiometabolic risk factors. Front Cell Infect Microbiol. 2017;7:47.

    Google Scholar 

  38. Gorvitovskaia A, Holmes SP, Huse SM. Interpreting prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome. 2016;4:15.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5:e177.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA. 2011;108:4586–91.

    Article  PubMed  CAS  Google Scholar 

  41. Liang C, Tseng HC, Chen HM, Wang WC, Chiu CM, Chang JY, et al. Diversity and enterotype in gut bacterial community of adults in Taiwan. BMC Genomics. 2017;18:932.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cheng M, Ning K. Stereotypes about enterotype: The old and new ideas. Genomics Proteom Bioinforma. 2019;17:4–12.

    Article  Google Scholar 

  43. Folchetti LG, Silva IT, Almeida-Pititto B, Ferreira SRG. Nutritionists’ Health Study cohort: a web-based approach of life events. habits and health outcomes. BMJ Open. 2016;6:e012081.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Institute of Medicine (US) and National Research Council (US) Committee to Reexamine IOM Pregnancy Weight Guidelines. Weight Gain During Pregnancy: Reexamining the Guidelines. Rasmussen KM, Yaktine AL, editors. Washington (DC): National Academies Press (US); 2009.

  45. Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35:1381–95.

    Article  PubMed  Google Scholar 

  46. Matsudo S, Araújo T, Marsudo V, Andrade D, Andrade E, Braggion G. Questionário internacional de atividade fisica: estudo de validade e reprodutibilidade no Brasil. Rev Bras Ativ Fis Saude. 2001;6:5–18.

    Google Scholar 

  47. Selem SS, Carvalho AM, Verly-Junior E, Carlos JV, Teixeira JA, Marchioni DM, et al. Validity and reproducibility of a food frequency questionnaire for adults of São Paulo, Brazil. Rev Bras Epidemiol 2014;17:852–9.

    Article  PubMed  Google Scholar 

  48. Haytowitz DB, Ahuja JKC, Wu X, Somanchi M, Nickle M, Nguyen QA, et al. USDA National Nutrient Database for Standard Reference, Legacy Release.: Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, ARS, USDA; 2019 [Available from: https://data.nal.usda.gov/dataset/usda-national-nutrient-database-standard-reference-legacy-release

  49. WHO. Obesity: Preventing and managing the global epidemic. WHO; 2015.

  50. Penington JS, Penno MAS, Ngui KM, Ajami NJ, Roth-Schulze AJ, Wilcox SA, et al. Influence of fecal collection conditions and 16S rRNA gene sequencing at two centers on human gut microbiota analysis. Sci Rep. 2018;8:4386.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ombrello AK. “Dada2,” Encycl. Med Immunol. 2020;13:1–7.

    Google Scholar 

  52. Pires DE, Oliveira FS, Correa FB, Morais DK, Fernandes GR. TAG. ME: Taxonomic assignment of genetic markers for ecology. BioRxiv. 2018. Available from: https://www.biorxiv.org/content/10.1101/263293v2.full.pdf.

  53. Dray S, Dufour AB. The ade4 package: Implementing the duality diagram for ecologists. J Stat Softw. 2007;22:1–20.

    Article  Google Scholar 

  54. Udayappan S, Manneras-Holm L, Chaplin-Scott A, Belzer C, Herrema H, Dallinga-Thie GM, et al. Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice. NPJ Biofilms Microbiomes. 2016;2:16009.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Huang Y, Wang Z, Ma H, Ji S, Chen Z, Cui Z, et al. Dysbiosis and Implication of the Gut Microbiota in Diabetic Retinopathy. Front Cell Infect Microbiol. 2021;11:646348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kelly TN, Bazzano LA, Ajami NJ, He H, Zhao J, Petrosino JF, et al. Gut Microbiome Associates with lifetime cardiovascular disease risk profile among Bogalusa Heart Study participants. Circ Res. 2016;119:956–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Sugino KY, Paneth N, Comstock SS. Michigan cohorts to determine associations of maternal pre-pregnancy body mass index with pregnancy and infant gastrointestinal microbial communities: Late pregnancy and early infancy. PLoS One. 2019;14:e0213733.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sun S, Lulla A, Sioda M, Winglee K, Wu MC, Jacobs DR Jr, et al. Gut microbiota composition and blood pressure. Hypertension. 2019;73:998–1006.

    Article  PubMed  CAS  Google Scholar 

  59. Komiya S, Naito Y, Okada H, Matsuo Y, Hirota K, Takagi T, et al. Characterizing the gut microbiota in females with infertility and preliminary results of a water-soluble dietary fiber intervention study. J Clin Biochem Nutr. 2020;67:105–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Freitas RGBON, Vasques ACJ, Fernandes GDR, Ribeiro FB, Solar I, Barbosa MG, et al. Associations of Blautia genus with early-life events and later phenotype in the NutriHS. Front Cell Infect Microbiol. 2022;12:838750.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Osborne G, Wu F, Yang L, Kelly D, Hu J, Li H, et al. The association between gut microbiome and anthropometric measurements in Bangladesh. Gut Microbes. 2020;11:63–76.

    Article  PubMed  CAS  Google Scholar 

  62. Kaplan RC, Wang Z, Usyk M, Sotres-Alvarez D, Daviglus ML, Schneiderman N, et al. Author correction: Gut microbiome composition in the Hispanic Community Health Study/Study of Latinos is shaped by geographic relocation, environmental factors, and obesity. Genome Biol. 2020;21:50.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yun Y, Kim HN, Kim SE, Heo SG, Chang Y, Ryu S, et al. Comparative analysis of gut microbiota associated with body mass index in a large Korean cohort. BMC Microbiol. 2017;17:151.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zeng X, Gao X, Peng Y, Wu Q, Zhu J, Tan C, et al. Higher risk of stroke is correlated with increased opportunistic pathogen load and reduced levels of butyrate-producing bacteria in the gut. Front Cell Infect Microbiol. 2019;9:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Rogosa M. Acidaminococcus gen. n., Acidaminococcus fermentans sp. n., anaerobic gram-negative diplococci using amino acids as the sole energy source for growth. J Bacteriol. 1969;98:756–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Vermeulen MA. Glutamate reduces experimental intestinal hyperpermeability and facilitates glutamine support of gut integrity. World J Gastroenterol. 2011;17:1569–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Burrin DG, Stoll B. Metabolic fate and function of dietary glutamate in the gut. Am J Clin Nutr. 2009;90:850S–856S.

    Article  PubMed  CAS  Google Scholar 

  68. Honka MJ, Latva-Rasku A, Bucci M, Virtanen KA, Hannukainen JC, Kalliokoski KK, et al. Insulin-stimulated glucose uptake in skeletal muscle, adipose tissue and liver: a positron emission tomography study. Eur J Endocrinol. 2018;178:523–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Crovesy L, Ostrowski M, Ferreira DM, Rosado EL, Soares-Mota M. Effect of Lactobacillus on body weight and body fat in overweight subjects: a systematic review of randomized controlled clinical trials. Int J Obes (Lond). 2017;41:1607–14.

    Article  PubMed  CAS  Google Scholar 

  70. Huang WC, Lee MC, Lee CC, Ng KS, Hsu YJ, Tsai TY, et al. Effect of Lactobacillus plantarum TWK10 on exercise physiological adaptation, performance, and body composition in healthy humans. Nutrients. 2019;11:2836.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Verheggen RJHM, Konstanti P, Smidt H, Hermus ARMM, Thijssen DHJ, Hopman MTE. Eight-week exercise training in humans with obesity: Marked improvements in insulin sensitivity and modest changes in gut microbiome. Obesity. 2021;29:1615–24.

    Article  PubMed  CAS  Google Scholar 

  72. Cunningham AL, Stephens JW, Harris DA. A review on gut microbiota: A central factor in the pathophysiology of obesity. Lipids Health Dis. 2021;20:65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Garcia-Mantrana I, Selma-Royo M, Alcantara C, Collado MC. Shifts on gut microbiota associated to Mediterranean diet adherence and specific dietary intakes on general adult population. Front Microbiol. 2018;9:890.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cao Y, Zou L, Li W, Song Y, Zhao G, Hu Y. Dietary quinoa (Chenopodium quinoa Willd.) polysaccharides ameliorate high-fat diet-induced hyperlipidemia and modulate gut microbiota. Int J Biol Macromol. 2020;163:55–65.

    Article  PubMed  CAS  Google Scholar 

  75. Zhu Y, Li Y, Liu M, Hu X, Zhu H. Guizhi Fuling Wan, Chinese herbal medicine, ameliorates insulin sensitivity in PCOS model rats with insulin resistance via remodeling intestinal homeostasis. Front Endocrinol. 2020;11:575.

    Article  Google Scholar 

  76. Sergeev IN, Aljutaily T, Walton G, Huarte E. Effects of synbiotic supplement on human gut microbiota, body composition and weight loss in obesity. Nutrients. 2020;12:222.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Carlier JP, Bedora-Faure M, K’ouas G, Alauzet C, Mory F. Proposal to unify Clostridium orbiscindens Winter et al. 1991 and Eubacterium plautii (Séguin 1928) Hofstad and Aasjord 1982, with description of Flavonifractor plautii gen. nov., comb. nov., and reassignment of Bacteroides capillosus to Pseudoflavonifractor capillosus gen. nov., comb. nov. Int J Syst Evol Microbiol. 2010;60:585–90.

    Article  PubMed  CAS  Google Scholar 

  78. Mikami A, Ogita T, Namai F, Shigemori S, Sato T, Shimosato T. Oral administration of Flavonifractor plautii attenuates inflammatory responses in obese adipose tissue. Mol Biol Rep. 2020;47:6717–25.

    Article  PubMed  CAS  Google Scholar 

  79. Bailén M, Bressa C, Martínez-López S, González-Soltero R, Montalvo Lominchar MG, San, et al. Microbiota features associated with a high-fat/low-fiber diet in healthy adults. Front Nutr. 2020;7:583608.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kaur S, Yawar M, Kumar PA, Suresh K. Hungatella effluvii gen. nov., sp. nov., an obligately anaerobic bacterium isolated from an effluent treatment plant, and reclassification of Clostridium hathewayi as Hungatella hathewayi gen. nov., comb. nov. Int J Syst Evol Microbiol. 2014;64:710–8.

    Article  PubMed  CAS  Google Scholar 

  81. Costa LM, Mendes MM, Oliveira AC, Magalhães KG, Shivappa N, Hebert JR, et al. Dietary inflammatory index and its relationship with gut microbiota in individuals with intestinal constipation: A cross-sectional study. Eur J Nutr. 2022;61:341–55.

    Article  PubMed  CAS  Google Scholar 

  82. Chin HB, Baird DD, McConnaughey DR, Weinberg CR, Wilcox AJ, Jukic AM. Long-term recall of pregnancy-related events. Epidemiology. 2017;28:575.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Clinical Pathology Laboratory of UNICAMP Hospital and the Growth and Body Composition Laboratory of UNICAMP Center for Investigation in Pediatrics. We also thank Vinícius Santos for helping with clinical examinations.

Funding

This work was supported by Foundation for Research Support of the State of São Paulo – FAPESP (grant 2018/11433–9. 2018/11401–0).

Author information

Authors and Affiliations

Authors

Contributions

RGBONF, ACJV, GRF, BAP, SRGF contributed to conception and design. RGBONF; ACJV; GRF; FFB; IS; MGB; BG; SRGF contributed to acquisition, analysis, or interpretation. RGBONF; SRGF drafted the manuscript. RGBONF; ACJV; GRF; BG; SRGF critically revised the manuscript. RGBONF; ACJV; GRF; FFB; IS; MGB; BAP; BG; SRGF gave final approval agrees to be accountable for all aspects of work ensuring integrity and accuracy.

Corresponding author

Correspondence to S R G Ferreira.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, R.G.B.O.N., Vasques, A.C.J., Fernandes, G.R. et al. Gestational weight gain and visceral adiposity in adult offspring: Is there a link with the fecal abundance of Acidaminococcus genus?. Eur J Clin Nutr 76, 1705–1712 (2022). https://doi.org/10.1038/s41430-022-01182-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-022-01182-7

Search

Quick links