Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

N-type conjugated polyelectrolyte enabled by in situ self-doping during aldol condensation

Abstract

Self-doped conjugated polyelectrolytes (CPEs) exhibit appealing application prospects in organic electronics, and their properties can be widely tuned via doping. Nevertheless, the development of high-performance n-type self-doped CPEs lags far behind that for mature p-doped CPEs. It is of great significance but still challenging to develop facile syntheses and doping pathways for n-type self-doped conjugated polymers. Herein, a transition metal-free aldol condensation polymerization accompanied by an in situ n-doping process was explored to prepare an n-type CPE. The obtained CPE, PIIGBDV-N, exhibited strong doping-induced polaron absorption in the near-infrared region, high conductivity and great ambient stability. Organic solar cell (OSC) devices using PIIGBDV-N as the electron transport layer (ETL) exhibited excellent photovoltaic conversion efficiency (PCE) and good ETL thickness tolerance. This study sheds light on facile and efficient syntheses and doping methods for preparing n-type conjugated polymers with promise for application in organic electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kiefer D, Kroon R, Hofmann AI, Sun H, Liu X, Giovannitti A, et al. Double doping of conjugated polymers with monomer molecular dopants. Nat Mater. 2019;18:149–55.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Y, de Boer B, Blom PWM. Controllable molecular doping and charge transport in solution-processed polymer semiconducting layers. Adv Funct Mater. 2009;19:1901–5.

    Article  CAS  Google Scholar 

  3. Tanaka H, Hirate M, Watanabe S, Kuroda S-I. Microscopic signature of metallic state in semicrystalline conjugated polymers doped with fluoroalkylsilane molecules. Adv Mater. 2014;26:2376–83.

    Article  CAS  PubMed  Google Scholar 

  4. Bubnova O, Khan ZU, Wang H, Braun S, Evans DR, Fabretto M, et al. Semi-metallic polymers. Nat Mater. 2014;13:190–4.

    Article  CAS  PubMed  Google Scholar 

  5. Tan J-K, Png R-Q, Zhao C, Ho PKH. Ohmic transition at contacts key to maximizing fill factor and performance of organic solar cells. Nat Commun. 2018;9:3269.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tang CG, Ang MCY, Choo K-K, Keerthi V, Tan J-K, Syafiqah MN, et al. Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts. Nature. 2016;539:536–40.

    Article  CAS  PubMed  Google Scholar 

  7. Tang H, Liu Z, Hu Z, Liang Y, Huang F, Cao Y. Oxoammonium enabled secondary doping of hole transporting material PEDOT:PSS for high-performance organic solar cells. Sci China Chem. 2020;63:802–9.

    Article  CAS  Google Scholar 

  8. Xu Y, Sun H, Liu A, Zhu H-H, Li W, Lin Y-F, et al. Doping: A key enabler for organic transistors. Adv Mater. 2018;30:1801830.

    Article  Google Scholar 

  9. Yang C-Y, Stoeckel M-A, Ruoko T-P, Wu H-Y, Liu X, Kolhe NB, et al. A high-conductivity n-type polymeric ink for printed electronics. Nat Commun. 2021;12:2354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rivnay J, Inal S, Salleo A, Owens RM, Berggren M, Malliaras GG. Organic electrochemical transistors. Nat Rev Mater. 2018;3:17086.

    Article  CAS  Google Scholar 

  11. Zhou Y-Y, Wang Z-Y, Yao Z-F, Yu Z-D, Lu Y, Wang X-Y, et al. Systematic investigation of solution-state aggregation effect on electrical conductivity in doped conjugated polymers. CCS Chem. 2021;3:2994–3004.

    Article  CAS  Google Scholar 

  12. Lu Y, Wang J-Y, Pei J. Strategies to enhance the conductivity of n-type polymer thermoelectric materials. Chem Mater 2019;31:6412–23.

    Article  CAS  Google Scholar 

  13. Jhulki S, Un H-I, Ding Y-F, Risko C, Mohapatra SK, Pei J, et al. Reactivity of an air-stable dihydrobenzoimidazole n-dopant with organic semiconductor molecules. Chem. 2021;7:1050–65.

    Article  CAS  Google Scholar 

  14. Gaul C, Hutsch S, Schwarze M, Schellhammer KS, Bussolotti F, Kera S, et al. Insight into doping efficiency of organic semiconductors from the analysis of the density of states in n-doped C60 and ZnPc. Nat Mater. 2018;17:439–44.

    Article  CAS  PubMed  Google Scholar 

  15. Naab BD, Guo S, Olthof S, Evans EGB, Wei P, Millhauser GL, et al. Mechanistic study on the solution-phase n-doping of 1,3-dimethyl-2-aryl-2,3-dihydro-1H-benzoimidazole derivatives. J Am Chem Soc. 2013;135:15018–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wei P, Menke T, Naab BD, Leo K, Riede M, Bao Z. 2-(2-Methoxyphenyl)-1,3-dimethyl-1H-benzoimidazol-3-ium iodide as a new air-stable n-type dopant for vacuum-processed organic semiconductor thin films. J Am Chem Soc. 2012;134:3999–4002.

    Article  CAS  PubMed  Google Scholar 

  17. Wei P, Oh JH, Dong G, Bao Z. Use of a 1H-benzoimidazole derivative as an n-type dopant and to enable air-stable solution-processed n-channel organic thin-film transistors. J Am Chem Soc. 2010;132:8852–3.

    Article  CAS  PubMed  Google Scholar 

  18. Kiefer D, Giovannitti A, Sun H, Biskup T, Hofmann A, Koopmans M, et al. Enhanced n-doping efficiency of a naphthalenediimide-based copolymer through polar side chains for organic thermoelectrics. ACS Energy Lett. 2018;3:278–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schlitz RA, Brunetti FG, Glaudell AM, Miller PL, Brady MA, Takacs CJ, et al. Solubility-limited extrinsic n-type doping of a high electron mobility polymer for thermoelectric applications. Adv Mater. 2014;26:2825–30.

    Article  CAS  PubMed  Google Scholar 

  20. Heinze J, Frontana-Uribe BA, Ludwigs S. Electrochemistry of conducting polymers—Persistent models and new concepts. Chem Rev. 2010;110:4724–71.

    Article  CAS  PubMed  Google Scholar 

  21. Wu Z, Sun C, Dong S, Jiang X-F, Wu S, Wu H, et al. N-type water/alcohol-soluble naphthalene diimide-based conjugated polymers for high-performance polymer solar cells. J Am Chem Soc. 2016;138:2004–13.

    Article  CAS  PubMed  Google Scholar 

  22. Jin X, Wang Y, Cheng X, Zhou H, Hu L, Zhou Y, et al. Fluorine-induced self-doping and spatial conformation in alcohol-soluble interlayers for highly-efficient polymer solar cells. J Mater Chem A. 2018;6:423–33.

    Article  CAS  Google Scholar 

  23. Tang H, Liu Z, Tang Y, Du Z, Liang Y, Hu Z, et al. Organic diradicals enabled N-type self-doped conjugated polyelectrolyte with high transparency and enhanced conductivity. Giant. 2021;6:100053.

    Article  CAS  Google Scholar 

  24. Miao J, Meng B, Liu J, Wang L. An A–D–A′–D–A type small molecule acceptor with a broad absorption spectrum for organic solar cells. Chem Commun. 2018;54:303–6.

    Article  CAS  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 16 Rev. A.03, Wallingford, CT, 2016.

  26. Hu Z, Zhang K, Huang F, Cao Y. Water/alcohol soluble conjugated polymers for the interface engineering of highly efficient polymer light-emitting diodes and polymer solar cells. Chem Commun. 2015;51:5572–85.

    Article  CAS  Google Scholar 

  27. Tan Y, Chen L, Wu F, Huang B, Liao Z, Yu Z, et al. Regulation of the polar groups in n-type conjugated polyelectrolytes as electron transfer layer for inverted polymer solar cells. Macromolecules. 2018;51:8197–204.

    Article  CAS  Google Scholar 

  28. Denti I, Cimò S, Brambilla L, Milani A, Bertarelli C, Tommasini M, et al. Polaron confinement in n-doped P(NDI2OD-T2) unveiled by vibrational spectroscopy. Chem Mater. 2019;31:6726–39.

    Article  CAS  Google Scholar 

  29. Zozoulenko I, Singh A, Singh SK, Gueskine V, Crispin X, Berggren M. Polarons, bipolarons, and absorption spectroscopy of PEDOT. ACS Appl Polym Mater. 2019;1:83–94.

    Article  CAS  Google Scholar 

  30. Li C-Z, Chueh C-C, Ding F, Yip H-L, Liang P-W, Li X, et al. Doping of fullerenes via anion-induced electron transfer and its implication for surfactant facilitated high performance polymer solar cells. Adv Mater. 2013;25:4425–30.

    Article  CAS  PubMed  Google Scholar 

  31. Lu Y, Yu Z-D, Zhang R-Z, Yao Z-F, You H-Y, Jiang L, et al. Rigid coplanar polymers for stable n-type polymer thermoelectrics. Angew Chem Int Ed. 2019;58:11390–4.

    Article  CAS  Google Scholar 

  32. Han J, Fan H, Zhang Q, Hu Q, Russell TP, Katz HE. Dichlorinated dithienylethene-based copolymers for air-stable n-type conductivity and thermoelectricity. Adv Funct Mater. 2021;31:2005901.

    Article  CAS  Google Scholar 

  33. Liu X, Chen Z, Xu R, Zhang R, Hu Z, Huang F, et al. Finely tuned composition in conjugated polyelectrolytes for interfacial engineering of efficient polymer solar cells. Small Methods. 2018;2:1700407.

    Article  Google Scholar 

  34. Page ZA, Liu Y, Duzhko VV, Russell TP, Emrick T. Fulleropyrrolidine interlayers: Tailoring electrodes to raise organic solar cell efficiency. Science. 2014;346:441.

    Article  CAS  PubMed  Google Scholar 

  35. Lee BH, Jung IH, Woo HY, Shim H-K, Kim G, Lee K. Multi-charged conjugated polyelectrolytes as a versatile work function modifier for organic electronic devices. Adv Funct Mater. 2014;24:1100–8.

    Article  CAS  Google Scholar 

  36. Huang F, Wu H, Cao Y. Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chem Soc Rev. 2010;39:2500–21.

    Article  CAS  PubMed  Google Scholar 

  37. Kahn A. Fermi level, work function and vacuum level. Mater Horiz. 2016;3:7–10.

    Article  CAS  Google Scholar 

  38. Peng X, Hu L, Qin F, Zhou Y, Chu PK. Low work function surface modifiers for solution-processed electronics: A review. Adv Mater Interfaces. 2018;5:1701404.

    Article  Google Scholar 

  39. Tian L, Jing J, Tang H, Liang Y, Hu Z, Rafiq M, et al. Aldol condensation-polymerized n-doped conjugated polyelectrolytes for high-performance nonfullerene polymer solar cells. Sol RRL. 2021;5:2000523.

    Article  CAS  Google Scholar 

  40. Shi K, Zhang F, Di C-A, Yan T-W, Zou Y, Zhou X, et al. Toward high performance n-type thermoelectric materials by rational modification of BDPPV backbones. J Am Chem Soc. 2015;137:6979–82.

    Article  CAS  PubMed  Google Scholar 

  41. Yuan D, Guo Y, Zeng Y, Fan Q, Wang J, Yi Y, et al. Air-stable n-type thermoelectric materials enabled by organic diradicaloids. Angew Chem Int Ed. 2019;58:4958–62.

    Article  CAS  Google Scholar 

  42. Yang K, Zhang X, Harbuzaru A, Wang L, Wang Y, Koh C, et al. Stable organic diradicals based on fused quinoidal oligothiophene imides with high electrical conductivity. J Am Chem Soc. 2020;142:4329–40.

    Article  CAS  PubMed  Google Scholar 

  43. Ribeiro LA, Monteiro FF, da Cunha WF, e Silva GM. Charge carrier scattering in polymers: A new neutral coupled soliton channel. Sci Rep. 2018;8:6595.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Emin D. Optical properties of large and small polarons and bipolarons. Phys Rev B. 1993;48:13691–702.

    Article  CAS  Google Scholar 

  45. Wang Z, Zheng N, Zhang W, Yan H, Xie Z, Ma Y, et al. Self-doped, n-type perylene diimide derivatives as electron transporting layers for high-efficiency polymer solar cells. Adv Energy Mater 2017;7:1700232.

    Article  Google Scholar 

  46. Zhao X, Madan D, Cheng Y, Zhou J, Li H, Thon SM, et al. High conductivity and electron-transfer validation in an n-type fluoride-anion-doped polymer for thermoelectrics in air. Adv Mater 2017;29:1606928.

    Article  Google Scholar 

  47. Zeng M, Zhu WY, Luo J, Song N, Li Y, Chen ZX, et al. Highly efficient nonfullerene organic solar cells with a self-doped water-soluble neutral polyaniline as hole transport layer. Sol RRL. 2021;5:2000625.

    Article  CAS  Google Scholar 

  48. Lee BH, Lee J-H, Jeong SY, Park SB, Lee SH, Lee K. Broad work-function tunability of p-type conjugated polyelectrolytes for efficient organic solar cells. Adv Energy Mater. 2015;5:1401653.

    Article  Google Scholar 

  49. Jo JW, Jung JW, Bae S, Ko MJ, Kim H, Jo WH, et al. Development of self-doped conjugated polyelectrolytes with controlled work functions and application to hole transport layer materials for high-performance organic solar cells. Adv Mater Interfaces. 2016;3:1500703.

    Article  Google Scholar 

  50. Tang CG, Syafiqah MN, Koh Q-M, Zhao C, Zaini J, Seah Q-J, et al. Multivalent anions as universal latent electron donors. Nature. 2019;573:519–25.

    Article  CAS  PubMed  Google Scholar 

  51. Atxabal A, Braun S, Arnold T, Sun X, Parui S, Liu X, et al. Energy level alignment at metal/solution-processed organic semiconductor interfaces. Adv Mater. 2017;29:1606901.

    Article  Google Scholar 

  52. Yan L, Song Y, Zhou Y, Song B, Li Y. Effect of PEI cathode interlayer on work function and interface resistance of ITO electrode in the inverted polymer solar cells. Org Electron. 2015;17:94–101.

    Article  CAS  Google Scholar 

  53. Tian L, Xue Q, Hu Z, Huang F. Recent advances of interface engineering for non-fullerene organic solar cells. Org Electron. 2021;93:106141.

    Article  CAS  Google Scholar 

  54. Kyeong M, Lee J, Daboczi M, Stewart K, Yao H, Cha H, et al. Organic cathode interfacial materials for non-fullerene organic solar cells. J Mater Chem A. 2021;9:13506–14.

    Article  CAS  Google Scholar 

  55. Jiang P, Hu L, Sun L, Li ZA, Han H, Zhou Y. On the interface reactions and stability of nonfullerene organic solar cells. Chem Sci. 2022;13:4714–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhong Z, Peng F, Huang Z, Ying L, Yu G, Huang F, et al. High-detectivity non-fullerene organic photodetectors enabled by a cross-linkable electron blocking layer. ACS Appl Mater Interfaces. 2020;12:45092–100.

    Article  CAS  PubMed  Google Scholar 

  57. Shuttle CG, Maurano A, Hamilton R, O’Regan B, de Mello JC, Durrant JR. Charge extraction analysis of charge carrier densities in a polythiophene/fullerene solar cell: Analysis of the origin of the device dark current. Appl Phys Lett. 2008;93:183501.

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Basic and Applied Basic Research Major Program of Guangdong Province (No. 2019B030302007), the Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515011259), Guangdong Provincial Natural Science Foundation-Yueshen Joint Funding (Youth Project) (No. 2019A1515110464), Shenzhen Science and Technology Commission-free exploration/general project (No. JCYJ20190812151209348) and the Distinguished Young Scientists Program of Guangdong Province (No. 2019B151502021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunchen Liu or Fei Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Dou, Y., Tan, R. et al. N-type conjugated polyelectrolyte enabled by in situ self-doping during aldol condensation. Polym J 55, 517–527 (2023). https://doi.org/10.1038/s41428-022-00722-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00722-z

Search

Quick links