Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Single-component optically transparent film of a star-shaped cage silsesquioxane derivative and its phase change behavior

Abstract

Modularly synthesized giant molecular clusters containing rigid spherical molecules as element-blocks are a new class of unconventional macromolecules. Among various candidates for rigid spherical molecules, cage octasilsesquioxane (T8) frameworks have been demonstrated to be an efficient building block for designing well-defined 3D solid materials due to the flexible designability of their organic substituents. Here, we studied the crystalline phase and phase transition behavior of an optically transparent film of star-shaped (heptaisobutyl-T8-silsesquioxy)propyl-substituted octadimethylsiloxy-Q8-silsesquioxane (star-POSS) by DSC and wide-angle X-ray scattering (WAXS) measurements. This star-POSS exhibited a crystalline phase with a hexagonal system at room temperature and underwent melting above the melting temperature (Tm). Furthermore, the specimens underwent recrystallization even at temperature above Tm, resulting in the same hexagonal system with slightly larger a- and c-axis lengths. The amorphous state of the surrounding isobutyl substituents on the T8-cage framework provides an optically transparent film of star-POSS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cordes DB, Lickiss PD, Rataboul F. Recent developments in the chemistry of cubic polyhedral oligosilisesquioxanes. Chem Rev. 2010;110:2081–173.

    Article  CAS  PubMed  Google Scholar 

  2. Laine RM. Nanobuilding blocks based on the [OSiO1.5]x (x = 6, 8, 10) Octasilsesquioxnanes. J Mater Chem. 2005;15:3725–44.

    Article  CAS  Google Scholar 

  3. Chujo Y, Tanaka K. New polymeric materials based on element-blocks. Bull Chem Soc Jpn. 2015;88:633–43.

    Article  CAS  Google Scholar 

  4. Naka K, Irie Y. Synthesis of single component element-block materials based on siloxane-based cage frameworks. Polym Int. 2017;66:187–94.

    Article  CAS  Google Scholar 

  5. Croce G, Carniato F, Milanesio M, Boccaleri E, Paul G, van Beek W, et al. Understanding the physico-chemical properties of polyhedral oligomeric silsesquioxanes: A variable temperature multidisciplinary study. Phys Chem Chem Phys. 2009;11:10087–94.

    Article  CAS  PubMed  Google Scholar 

  6. Poliskie GM, Haddad TS, Blanski RL, Gleason KK. Characterization of the phase transitions of Ethyl substituted polyhedral oligomeric silsesquioxane. Thermochim Acta. 2005;438:116–25.

    Article  CAS  Google Scholar 

  7. Kettwich SC, Pierson SN, Peloquin AJ, Marbry JM, Iacono ST. Anomalous macromolecular assembly of partially fluorinated polyhedral oligomeric silsesquioxanes. N J Chem. 2012;36:941–6.

    Article  CAS  Google Scholar 

  8. Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Caminoa G. Polyhedral Oligomeric Silsesquioxanes (POSS) thermal degradation. Thermochim Acta. 2006;440:36–42.

    Article  CAS  Google Scholar 

  9. Kowalewska A, Nowacka M, Włodarska M, Zgardzińska B, Zaleski R, Oszajca M, et al. Solid-state dynamics and single-crystal to single-crystal structural transformations in Octakis(3-chloropropyl)octasilsesquioxane and Octavinyloctasilsesquioxane. Phys Chem Chem Phys. 2017;19:27516–29.

    Article  CAS  PubMed  Google Scholar 

  10. Morimoto S, Imoto H, Naka K. POSS solid solutions exhibiting orientationally disordered phase transition. Chem Commun. 2017;53:9273–6.

    Article  CAS  Google Scholar 

  11. Morimoto S, Imoto H, Naka K. Effect of mono-substituents in heptaisobutyl-substituted polyhedral octasilsesquioxanes on orientationally disordered phase transition. Bull Chem Soc Jpn. 2018;91:1390–6.

    Article  CAS  Google Scholar 

  12. Zhang WB, Yu X, Wang CL, Sun HJ, Hsieh IF, Li Y, et al. Molecular nanoparticles are unique elements for macromolecular science: From “Nanoatoms” to giant molecules. Macromolecules. 2014;47:1221–39.

    Article  CAS  Google Scholar 

  13. Huang M, Hsu CH, Wang J, Mei S, Dong X, Li Y, et al. Selective assemblies of giant tetrahedra via precisely controlled positional interactions. Science. 2015;348:424–8.

    Article  CAS  PubMed  Google Scholar 

  14. Liu G, Feng X, Lang K, Zhang R, Guo D, Yang S, et al. Dynamics of shape-persistent giant molecules: Zimm-like melt, elastic plateau, and cooperative glass-like. Macromolecules. 2017;50:6637–46.

    Article  CAS  Google Scholar 

  15. Li Y, Zhang WB, Hsieh IF, Zhang G, Cao Y, Li X, et al. Breaking symmetry toward nonspherical janus particles based on polyhedral oligomeric silsesquioxanes: Molecular Design, “Click” synthesis, and hierarchical structure. J Am Chem Soc. 2011;133:10712–5.

    Article  CAS  PubMed  Google Scholar 

  16. Feng X, Zhu S, Yue K, Su H, Guo K, Wesdemiotis C, et al. T10 polyhedral oligomeric silsesquioxane-based shape amphiphiles with diverse head functionalities via “Click” chemistry. ACS Macro Lett. 2014;3:900–5.

    Article  CAS  PubMed  Google Scholar 

  17. Feng X, Zhang R, Li Y, Hong YL, Guo D, Lang K, et al. Hierarchical Self- Organization of ABn Dendron-like Molecules into a Supramolecular Lattice Sequence. ACS Cent Sci. 2017;3:860–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang X, Yang Y, Gao P, Li D, Yang F, Shen H, et al. POSS dendrimers Constructed from a 1 - 7 branching monomer. Chem Commun. 2014;50:6126–9.

    Article  CAS  Google Scholar 

  19. Araki H, Naka K. Syntheses of dumbbell-shaped Trifluoropropyl-Substituted POSS derivatives linked by simple aliphatic chains and their optical transparent thermoplastic films. Macromolecules. 2011;44:6039–45.

    Article  CAS  Google Scholar 

  20. Araki H, Naka K. Syntheses and properties of star- and dumbbell-shaped POSS derivatives containing isobutyl groups. J Polym Sci Part A: Polym Chem. 2012;50:4170–81.

    Article  CAS  Google Scholar 

  21. Araki H, Naka K. Syntheses and properties of star- and dumbbell-shaped POSS derivatives containing isobutyl groups. J Polym Sci Part A: Polym Chem. 2012;50:4170–81.

    Article  CAS  Google Scholar 

  22. Spoljaric S, Genovese A, Shanks RA. Novel elastomer-dumbbell functionalized POSS composites: Thermomechanical and morphological properties. J Appl Polym Sci. 2012;123:585–600.

    Article  CAS  Google Scholar 

  23. Blanco I, Abate L, Bottino FA. Synthesis and thermal behaviour of phenyl-substituted POSSs linked by aliphatic and aromatic bridges. J Therm Anal Calorim. 2018;131:843–51.

    Article  CAS  Google Scholar 

  24. Blanco I, Bottino FA, Bottino P, Chiaccio MA. A novel three-cages POSS molecule: Synthesis and thermal behaviour. J Therm Anal Calorim. 2018;134:1337–44.

    Article  CAS  Google Scholar 

  25. Żak P, Bołt, Dudziec B, Kubicki M. Synthesis of (E)-1,4-Disilsesquioxylsubstituted But-1-en-3-ynes vis Platinum-catalyzed Dimerization of Ethynylsiloxysilsesquioxanes. Dalton Trans. 2019;48:2657–63.

    Article  PubMed  Google Scholar 

  26. Liu Y, Liu G-X, Zhang W, Du C, Wesdemiotics C, Cheng SZD. Cooperative soft-cluster glass in giant molecular clusters. Macromolecules. 2019;52:4341–8.

    Article  CAS  Google Scholar 

  27. Araki H, Naka K. Syntheses and properties of star- and dumbbell-shaped POSS derivatives containing isobutyl groups. Polym J. 2012;44:340–6.

    Article  CAS  Google Scholar 

  28. Yasumoto Y, Yamanaka T, Sakurai S, Imoto H, Naka K. Design of low-crystalline and -density isobutyl-substituted caged Silsesquioxane derivatives by star-shaped architectures linked with short aliphatic chains. Polym J. 2016;48:281–7.

    Article  CAS  Google Scholar 

  29. Kobayashi T, Hashimoto T. Development of self-assembling nucleators for highly transparent semi-crystalline polypropylene. Bull Chem Soc Jpn. 2005;78:219–35.

    Google Scholar 

  30. Balzano L, Sasyogi S, Peters GWM. Flow Induced Crystallization in Isotactic Polypropylene−1,3:2,4-Bis(3,4-dimethylbenzylidne)sorbitol Blends: Implications on morphology of Shear and Phase Separation. Macromolecules. 2008;41:399–408.

    Article  CAS  Google Scholar 

  31. Shibayama M, Katoh K, Iwamoto T, Takahashi D, Nomura S. Structure of high transparent polypropylene film. Polym J. 1991;23:837–46.

    Article  CAS  Google Scholar 

  32. Waddon AJ, Coughlin EB. Crystal structure of Polyhedral Oligomeric Silsesquioxane (POSS) nano-materials: A study by x-ray diffraction and electron microscopy. Chem Mater. 2003;15:4555–61.

    Article  CAS  Google Scholar 

  33. Larsson K. Crystal structure of Octa(methylsilsesquioxane), (CH3SiO1.5)8. Ark Kemi. 1960;16:203–8.

    CAS  Google Scholar 

  34. Larsson K. Crystal structures of Substituted Octa(silsesquioxanes), (RSiO1.5)8 and (ArSiO1.5)8. Ark Kemi. 1960;16:209–14.

    CAS  Google Scholar 

  35. Larsson K. Crystal structure of (HSiO1.5)8. Ark Kemi. 1960;16:215–9.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (No. 19H02764) from the Ministry of Education, Culture, Sports, Science, and Technology, Government of Japan. We thank Prof. Tsuyoshi Kawai, Ms. Yoshiko Nishikawa, and Mieko Yamagaki of Nara Institute of Science and Technology for performing MALDI-TOF-MS supported by the Nanotechnology Platform. The WAXS measurements were performed at BL-10C in Photon Factory, KEK, Japan (under Approval No. 2021G569).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shinichi Sakurai or Kensuke Naka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, R., Li, L., Imoto, H. et al. Single-component optically transparent film of a star-shaped cage silsesquioxane derivative and its phase change behavior. Polym J 54, 1179–1190 (2022). https://doi.org/10.1038/s41428-022-00674-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00674-4

This article is cited by

Search

Quick links