Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cage octasilsesquioxane-pendant polynorbornenes connected with short spacers exhibiting optical transparency

Abstract

Heptaisobutyl-norbornenylethyl-substituted cage octasilsesquioxane (POSS) (1a) and heptaphenyl-norbornenylethyl-substituted POSS (1b) were subjected to ring-opening metathesis polymerizations (ROMP) at room temperature with the Grubbs 2nd generation catalyst. The metathesis polymerizations of 1a and 1b were performed at room temperature for 3 h with initial monomer molar concentrations of [1a, 1b] = 10 mM, and the number average molecular weights (Mn) of 2a and 2b were 82,000 g/mol and 87,000 g/mol, respectively. Dynamic light scattering (DLS) and static light scattering (SLS) measurements showed that the Rg/Rh value for 2a was 4.91, suggesting the formation of polydisperse rod-shaped particles. Chloroform solutions of 2a and 2b were cast onto glass substrates and dried at room temperature to obtain optically transparent free-standing films. X-ray diffraction (XRD) analyses of the casted films revealed their amorphous natures. Thermogravimetric analyses (TGA) of 2a and 2b under N2 atmospheres showed 5 wt% losses (Td5) at 416 °C and 451 °C, respectively. The POSS-pendant polynorbornenenes connected with short spacers exhibited showed high optical transparencies owing to the prevention of POSS crystallization and the excellent thermal stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Laine RM. Nanobuilding blocks base on the [OSiO1.5]x (x = 6, 8, 10) octasilsesquioxanews. J Mater Chem. 2005;15:3725–44.

    Article  CAS  Google Scholar 

  2. Cordes DB, Lickiss PD, Rataboul F. Recent development in the chemistry of cubic polyhedral oligosilisesquioxanes. Chem Rev. 2010;110:2081–173.

    Article  CAS  PubMed  Google Scholar 

  3. Li G, Wang L, Ni H, Pittman CU Jr. Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. J Inorg Org Polym. 2001;11:123–54.

    Article  CAS  Google Scholar 

  4. Zheng L, Hong S, Cardoen G, Burgaz E, Gido S, Coughlin EB. Polymer Nanocomposites through Controlled Self-Assembly of Cubic Silsesquioxane Scaffolds. Macromolecules. 2004;37:8606–11.

    Article  ADS  CAS  Google Scholar 

  5. Seurer B, Coughlin EB. Ethylene-propylene-silsesquixane thermoplastic elastomers. Macromol Chem Phys. 2008;209:1198–209.

    Article  CAS  Google Scholar 

  6. Leu CM, Chang YT, Wei KH. Synthesis and Dielectric Properties of Polyimide-Tethered PolyhedralOligomeric Silsesquioxane (POSS) Nanocomposites via POSS-diamine. Macromolecules. 2003;36:9122–7.

    Article  ADS  CAS  Google Scholar 

  7. Sakurai K, Kashiwagi T, Takahashi T. Crystal structure of polynorbornene. J Appl Polym Sci. 1993;47:937–40.

    Article  CAS  Google Scholar 

  8. Mather PT, Jeon HG, Romo-Uribe A, Haddad TS, Lichtenhan JD. Mechanic relaxiation and microstructure of poly(norbonyl-POSS) copolymers. Macromolecules. 1999;32:1194–203.

    Article  ADS  CAS  Google Scholar 

  9. Zhen L, Farris RJ, Coughlin EB. Synthesis of polyethylene hybrid copolymers containing polyhedral oligomeric silsesquioxane prepared with ring-opening metathesis copolymerization. J Polym Sci Part A Polym Chem. 2001;39:2920–8.

    Article  ADS  Google Scholar 

  10. Chae CG, Yu YG, Seo HB, Kim MJ, Grubbs RH. Experimental formulation of photonic crystal properties for hierarchically self-assembled POSS-Bottlebrush block copolymers. Macromolecules. 2018;51:3458–66.

    Article  ADS  CAS  Google Scholar 

  11. Zhao B, Hong G, Li L, Zheng S. Nanocomposites of polyethylene with polyhedral oligomeric silsesquioxane: from thermoplastic to vitrimers through silyl ether metathesis. Mater Today Chem. 2021;24:1005759.

    Google Scholar 

  12. Finkelmann H, Happ M, Portugal M, Ringsdorf H. Liquid crystalline polymers with biphenyl-moieties as mesogenic group. Makromol Chem. 1978;179:2541–4.

    Article  CAS  Google Scholar 

  13. Zheng XH, Zhao JF, Zhao TP, Yang T, Ren XK, Yang S, Chen EQ. Homopolymer and random copolymer of polyhedral oligomeric silsesquioxane (POSS)-based side-chain polynorbornenes: Flexible spacer effect and composition dependence. Macromolecules. 2018;51:4484–93.

    Article  ADS  CAS  Google Scholar 

  14. Chae CG, Yu YG, Seo HB, Kim MJ, Kishore MYLN, Lee JS. Molecular and kinetic design for the expanded control of molecular weights in the ring-opening metathesis polymerization of norbornene-substituted polyhedral oligomeric silsesquioxnaes. Polym Chem. 2018;9:5179–89.

    Article  CAS  Google Scholar 

  15. Igarashi A, Ueda Y, Katoh R, Imoto H, Naka K. Highly selective mono-functionalization of open-cage silsesquioxane toward film-formable homopolymer. J Polym Sci. 2021;59:131–8.

    Article  CAS  Google Scholar 

  16. Imoto H, Nakao Y, Nishizawa N, Fujii S, Nakamura Y, Naka K. Tripodal polyhedral oligomeric silsesquioxanes as novel class of three-dimensional emulsifiers. Polym J. 2015;47:609–15.

    Article  CAS  Google Scholar 

  17. Igarashi A, Imoto H, Naka K. Polymethacrylates containing cage-silsesquioxanes in the side chains: effects of cage and linker structures on film properties. Polym Chem. 2022;13:1228–35.

    Article  CAS  Google Scholar 

  18. Sato Y, Imoto H, Naka K. Soluble and film-formable homopolymer tethering side-opened cage silsesquioxane pendants. J Polym Sci. 2020;58:1456–62.

    Article  CAS  Google Scholar 

  19. Nakano T, Okamoto K, Imoto H, Naka K. Double-cyclopolymerization using trifunctional incompletely-condensed cage silsesquioxane with methacryloyl groups. Polym J. 2023;55:193–201.

    Article  CAS  Google Scholar 

  20. Lichtenhan JD, Otonari YA, Carr MJ. Linear hybrid polymer building blocks: Methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers. Macromolecules. 1995;28:8435–7.

    Article  ADS  CAS  Google Scholar 

  21. Seurer B, Coughlin EB. Ethylene-propylene-silsesquioxane thermoplastic elastomers. Macromol Chem Phys. 2008;209:1198–209.

    Article  CAS  Google Scholar 

  22. Huber K, Bantle S, Lutz P, Burchard W. Hydrodynamic and thermodynamic behavior of short-chain polystyrene in toluene and cyclohexane at 34.5 °C. Macromolecules. 1985;18:1461–7.

    Article  ADS  CAS  Google Scholar 

  23. Akcasu AZ, Han CC. Molecular weight and temperature dependence of polymer dimensions in solution. Macromolecules. 1979;12:276–80.

    Article  ADS  CAS  Google Scholar 

  24. Konishi T, Yoshizaki T, Yamakawa H. On the “universal constants” ρ and Φ. of flexible polymers. Macromolecules. 1991;24:5614–22.

    Article  ADS  CAS  Google Scholar 

  25. Hamidi N, Ganewatta MS. Influence of the rosin pendant groups on the solution properties of a high molecular weight hydrogenated polynorbornene. Polymer. 2021;232:124167.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research (No. 19H02764 and 23K17944) from the Ministry of Education, Culture, Sports, Science, and Technology, Government of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kensuke Naka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomioka, Y., Tanaka, R., Pham, T.T. et al. Cage octasilsesquioxane-pendant polynorbornenes connected with short spacers exhibiting optical transparency. Polym J (2024). https://doi.org/10.1038/s41428-024-00903-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-024-00903-y

Search

Quick links