Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CHCl3/triethanolamine: a new mixed solvent for preparing high-molecular-weight main-chain benzoxazines through Mannich-type polycondensation

Abstract

Mannich-type polycondensation with 4,4’-diaminodiphenylmethane (DDM), 2,2-bis(4-hydroxyphenol) propane (BPA) and paraformaldehyde (PF) in different solvents was carried out to prepare main-chain benzoxazines. When pure CHCl3 was used as the solvent, the decomposition rate of PF in CHCl3 was very slow, thus preventing gelation caused by the formation of triazine in the early reaction, producing P(B-D)1 composed of partially closed and unclosed structures. The addition of alkaline triethylamine into CHCl3 (CHCl3/triethylamine = 6:1) greatly enhanced the decomposition rate of PF but gave a large triazine gel. The introduction of triethanolamine into CHCl3 was found to promote the decomposition of PF, enhance the polymerization rate, and prevent gelation caused either by the formation of triazine or by the ring-opening of oxazine ring through a solvation effect. Polymers P(B-D) 6~P(B-D)8 obtained in CHCl3/triethanolamine had a high-oxazine content and a high number molecular weight (Mn) near 8000. Further optimization of Mannich-type polycondensation in CHCl3/triethanolamine gave preferred conditions: a CHCl3/triethanolamine ratio of 4:1, a PF of 1.2 eq and a reaction time of 24 h. Compared with P(B-D)1 and P(B-D)3 (obtained in toluene/ethanol), P(B-D)9 obtained under the optimized conditions showed a higher Mn (10,000) and a higher yield (97.0%). The optimized conditions were also applicable for other kinds of diamines and bisphenols.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu J, Agag T, Ishida H. Main-chain type benzoxazine oligomers: a new concept for easy processable high performance polybenzoxazines. In: Ishida H, Agag T, editors. Handbook of benzoxazine resins. Amsterdam: Elsevier B.V.; 2011. p. 355–62.

  2. Ghosh NN, Kiskan B, Yagci Y. Polybenzoxazines—new high performance thermosetting resins: synthesis and properties. Prog Polym Sci. 2007;32:1344–91.

    Article  CAS  Google Scholar 

  3. Takeichi T, Kawauchi T, Agag T. High performance poly-benzoxazines as a novel type of phenolic resin. Polym J. 2008;40:1121–31.

    Article  CAS  Google Scholar 

  4. Demir KD, Kiskan B, Aydogan B, Yagci Y. Thermally curable main-chain benzoxazine prepolymers via polycondensation route. React Funct Polym. 2013;73:346–59.

    Article  CAS  Google Scholar 

  5. Kobayashi T, Muraoka M, Goto M, Minami M, Sogawa H, Sanda F. Main-chain type benzoxazine polymers consisting of polypropylene glycol and phenyleneethynylene units: spacer effect on curing behavior and thermomechanical properties. Polym J. 2022;54:133–41.

    Article  CAS  Google Scholar 

  6. Murai Y, Uemura T, Chen Y, Kawauchi T, Takeichi T. Synthesis of high-molecular-weight benzoxazines from various combinations of bisphenols and diamines via Mannich condensation and properties of their thermosets. Polym J. 2021;53:439–47.

    Article  CAS  Google Scholar 

  7. Dogan Demir K, Kiskan B, Yagci Y. Thermally curable acetylene-containing main-chain benzoxazine polymers via sonogashira coupling reaction. Macromolecules. 2011;44:1801–7.

    Article  CAS  Google Scholar 

  8. Kobayashi T, Goto M, Minami M, Sanda F. Synthesis and crosslinking reaction of a novel polymer containing benzoxazine and phenyleneethynylene moieties in the main chain. J Polym Sci Part A Polym Chem. 2019;57:2581–9.

    Article  CAS  Google Scholar 

  9. Ohara M, Yoshimoto K, Kawauchi T, Takeichi T. Synthesis of high-molecular-weight benzoxazines having azomethine linkages in the main-chain and the properties of their thermosetting resins. Polymer. 2020;202:122668.

    Article  CAS  Google Scholar 

  10. Zhang K, Liu Y, Ishida H. Polymerization of an AB-type benzoxazine monomer toward different polybenzoxazine networks: when Diels-Alder reaction meets benzoxazine chemistry in a single-component resin. Macromolecules. 2019;52:7386–95.

    Article  CAS  Google Scholar 

  11. Kiskan B, Aydogan B, Yagci Y. Synthesis, characterization, and thermally activated curing of oligosiloxanes containing benzoxazine moieties in the main chain. J Polym Sci Part A Polym Chem. 2009;47:804–11.

    Article  CAS  Google Scholar 

  12. Aydogan B, Sureka D, Kiskan B, Yagci Y. Polysiloxane-containing benzoxazine moieties in the main chain. J Polym Sci Part A Polym Chem. 2010;48:5156–62.

    Article  CAS  Google Scholar 

  13. Zhang K, Yu X, Kuo S-W. Outstanding dielectric and thermal properties of main chain-type poly(benzoxazine-co-imide-co-siloxane)-based cross-linked networks. Polym Chem. 2019;10:2387–96.

    Article  CAS  Google Scholar 

  14. Nagai A, Kamei Y, Wang X-S, Omura M, Sudo A, Nishida H, et al. Synthesis and crosslinking behavior of a novel linear polymer bearing 1,2,3-triazol and benzoxazine groups in the main chain by a step-growth click-coupling reaction. J Polym Sci Part A Polym Chem. 2008;46:2316–25.

    Article  CAS  Google Scholar 

  15. Chernykh A, Agag T, Ishida H. Synthesis of linear polymers containing benzoxazine moieties in the main chain with high molecular design versatility via click reaction. Polymer. 2009;50:382–90.

    Article  CAS  Google Scholar 

  16. Kiskan B, Yagci Y, Ishida H. Synthesis, characterization, and properties of new thermally curable polyetheresters containing benzoxazine moieties in the main chain. J Polym Sci Part A Polym Chem. 2008;46:414–20.

    Article  CAS  Google Scholar 

  17. Tuzun A, Kiskan B, AleDDMr N, Erciyes AT, Yagci Y. Benzoxazine containing polyester thermosets with improved adhesion and flexibility. J Polym Sci Part A Polym Chem. 2010;48:4279–84.

    Article  CAS  Google Scholar 

  18. Demir KD, Kiskan B, Latthe SS, Demirel AL, Yagci Y. Thermally curable fluorinated main chain benzoxazine polyethers via Ullmann coupling. Polym Chem. 2013;4:2106–14.

    Article  CAS  Google Scholar 

  19. Wang MW, Jeng RJ, Lin CH. The robustness of a thermoset of a main-chain type polybenzoxazine precursor prepared through a strategy of A-A and B-B polycondensation. RSC Adv. 2016;6:18678–84.

    Article  CAS  Google Scholar 

  20. Lin CH, Chang SL, Shen TY, Shih YS, Lin HT, Wang CF. Flexible polybenzoxazine thermosets with high glass transition temperatures and low surface free energies. Polym Chem. 2012;3:935–45.

    Article  CAS  Google Scholar 

  21. Takeichi T, Kano T, Agag T. Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets. Polymer. 2005;46:12172–80.

    Article  CAS  Google Scholar 

  22. Chernykh A, Liu J, Ishida H. Synthesis and properties of a new crosslinkable polymer containing benzoxazine moiety in the main chain. Polymer. 2006;47:7664–69.

    Article  CAS  Google Scholar 

  23. Chen J, Feng Z, Gu Y, Huang Y, Zeng M, Xu Q. A facile method for the preparation of aliphatic main-chain benzoxazine copolymers with high-frequency low dielectric constants. Polym Chem. 2018;9:2913–25.

    Article  Google Scholar 

  24. Parveen S, Kim H. Synthesis and properties of main-chain polybenzoxazines based on bisphenol-S. Polym Eng Sci. 2018;58:1766–73.

    Article  CAS  Google Scholar 

  25. Han M, You S, Wang Y, Zhang K, Yang S. Synthesis of highly thermally stable daidzein-based main-chain-type benzoxazine resins. Polymers. 2019;11:1–11.

    Article  CAS  Google Scholar 

  26. Chen J, Zeng M, Feng Z, Pang T, Huang Y, Xu Q. Design and preparation of benzoxazine resin with high-frequency low dielectric constants and ultralow dielectric losses. ACS Appl Polym Mater. 2019;1:625–30.

    Article  CAS  Google Scholar 

  27. Xu Q, Zeng M, Chen J, Zeng S, Huang Y, Feng Z, et al. Synthesis, polymerization kinetics, and high-frequency dielectric properties of novel main-chain benzoxazine copolymers. React Funct Polym. 2018;122:158–66.

    Article  CAS  Google Scholar 

  28. Deliballi Z, Kiskan B, Yagci Y. Main-chain benzoxazine precursor block copolymers. Polym Chem. 2018;9:178–83.

    Article  CAS  Google Scholar 

  29. Chen CH, Lin CH, Hon JM, Wang MW, Juang TY. First halogen and phosphorus-free, flame-retardant benzoxazine thermosets derived from main-chain type bishydroxydeoxybenzoin -based benzoxazine polymers. Polymer. 2018;154:35–41.

    Article  CAS  Google Scholar 

  30. Wang MW, Jeng RJ, Lin CH. Study on the ring-opening polymerization of benzoxazine through multisubstituted polybenzoxazine precursors. Macromolecules. 2015;48:530–35.

    Article  CAS  Google Scholar 

  31. Huang CH, Liu YL. A self-protection effect of monomers on preventing gelation in synthesis of main-chain polybenzoxazines with high molecular weights. Macromolecules. 2021;54:7434–40.

    Article  CAS  Google Scholar 

  32. Ručigaj A, Štirn Ž, Šebenik U, Krajnc M. Main-chain benzoxazine oligomers: Effects of molecular weight on the thermal, mechanical, and viscoelastic properties. J Appl Polym Sci. 2018;135:1–11.

    Article  Google Scholar 

  33. Shen L, Gan J, Wu K, Liang L, Zhang Y, Lu M, et al. Synthesis and characterization of a lateral phthalonitrile functionalized main-chain polybenzoxazine precursor. Macromol Res. 2016;24:409–14.

    Article  Google Scholar 

  34. Lin CH, Chang SL, Hsieh CW, Lee HH. Aromatic diamine-based benzoxazines and their high performance thermosets. Polymer. 2008;49:1220–9.

    Article  CAS  Google Scholar 

  35. Deng Y, Zhang Q, Zhang H, Zhang C, Wang W, Gu Y. Kinetics of 3,4-dihydro-2H-3-phenyl-1,3- benzoxazine synthesis from Mannich base and formaldehyde. Ind Eng Chem Res. 2014;53:1933–9.

    Article  CAS  Google Scholar 

  36. Yang P, Gu Y. A novel benzimidazole moiety-containing benzoxazine: synthesis, polymerization, and thermal properties. J Polym Sci Part A Polym Chem. 2012;50:1261–71.

    Article  CAS  Google Scholar 

  37. Zhang C-X, Deng Y-Y, Zhang Y-Y, Yang P, Gu Y. Study on products and reaction paths for synthesis of 3,4-dihydro-2H-3-phenyl-1,3-benzoxazine from phenol, aniline and formaldehyde. Chin Chem Lett. 2015;26:348–52.

    Article  Google Scholar 

  38. Arslan M. Synthesis and characterization of novel bio-based benzoxazines from gallic acid with latent catalytic characteristics. React Funct Polym. 2019;139:9–16.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the Hunan Provincial Natural Science Foundation of China (Nos. 2019JJ60021 and 2021JJ50073), the Scientific Research Fund of Hunan Provincial Education Department (No. 20A075), and the Engineering Technology Center for Advanced Thermal Protection and Flame Retardant Functional Materials (HYNU).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Lai or Po Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Liu, X., Lai, H. et al. CHCl3/triethanolamine: a new mixed solvent for preparing high-molecular-weight main-chain benzoxazines through Mannich-type polycondensation. Polym J 54, 1071–1079 (2022). https://doi.org/10.1038/s41428-022-00664-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00664-6

Search

Quick links