Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Precision copolymerization of CO2 and epoxides enabled by organoboron catalysts

Abstract

Copolymerization of CO2 and epoxides is an industrially relevant means to alleviate anthropogenic carbon emissions and non-degradable plastic pollution. Despite recent advances, few studies have focused on controlling the enchainment of ether and carbonate segments, a process that determines the performance of the material. Here we report precise control of the enchainment of ether and carbonate segments by using a series of well-defined dinuclear organoboron catalysts. By altering the catalyst structure and optimizing reaction conditions, the alternating carbonate content in the propylene oxide/CO2 copolymer is finely regulated over a wide range of 3.0–95.2%, and the polyether content is arbitrarily varied between <0.1% and 97.0%. A unique microstructure, the -ABB- linkage, is identified by NMR spectroscopy, hydrolysis-derivatization experiments and single-crystal X-ray diffraction. Density functional theory calculations indicate that the -ABB- microstructure originates from a regioselectivity-directed copolymerization process. By analysis of the crystal structures of four catalysts and their catalytic performance, we quantified a correlation between dinuclear organoboron catalyst structure and sequence selectivity (-AB-, -ABB- and -ABn-, n ≥ 3) in propylene oxide/CO2 copolymerization, which should enable new catalyst design for this sustainable transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Copolymerization of PO and CO2 mediated by organoboron catalysts.
Fig. 2: NMR spectroscopic characterization of the PO/CO2 copolymer (PO/7 = 1,000/1, mole ratio, 40 °C, 20 bar CO2 pressure).
Fig. 3: Determination of the microstructure of PO/CO2 copolymer.
Fig. 4: Optimization of the dinuclear organoboron catalysts for the copolymerization of PO and CO2.
Fig. 5: The proposed mechanism for PO/CO2 copolymerization using catalyst 7.
Fig. 6: The energy profile calculated using DFT for PO/CO2 copolymerization catalysed by the dinuclear organoboron catalyst.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2012655 (7), 2123603 (8), 1974836 (9), 2091870 (D1) and 2091869 (D2). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures. All other data supporting the findings of this study are available within the Article and its Supplementary Information.

References

  1. Gao, W. et al. Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem. Soc. Rev. 49, 8584–8686 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Zhu, Y., Romain, C. & Williams, C. K. Sustainable polymers from renewable resources. Nature 540, 354–362 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Tang, X., Westlie, A. H., Watson, E. M. & Chen, E. Y. X. Stereosequenced crystalline polyhydroxyalkanoates from diastereomeric monomer mixtures. Science 366, 754–758 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Häußler, M., Eck, M., Rothauer, D. & Mecking, S. Closed-loop recycling of polyethylene-like materials. Nature 590, 423–427 (2021).

    Article  PubMed  Google Scholar 

  5. Abel, B. A., Synder, R. L. & Coates, G. W. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 373, 783–789 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Feist, J. D., Lee, D. C. & Xia, Y. A versatile approach for the synthesis of degradable polymers via controlled ring-opening metathesis copolymerization. Nat. Chem. 14, 53–58 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Lebreton, L. et al. Evidence that the great Pacific garbage patch is rapidly accumulating plastic. Sci Rep. 8, 4666 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Byrne, C. M., Allen, S. D., Lobkovsky, E. B. & Coates, G. W. Alternating copolymerization of limonene oxide and carbon dioxide. J. Am. Chem. Soc. 126, 11404–11405 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Hauenstein, O., Agarwal, S. & Greiner, A. Bio-based polycarbonate as synthetic toolbox. Nat. Commun. 7, 11862 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Inoue, S., Koinuma, H. & Tsuruta, T. Copolymerization of carbon dioxide and epoxide. J. Polym. Sci. B 7, 287–292 (1969).

    Article  CAS  Google Scholar 

  11. Coates, G. W. & Moore, D. R. Discrete metal-based catalysts for the copolymerization CO2 and epoxides: discovery, reactivity, optimization, and mechanism. Angew. Chem. Int. Ed. 43, 6618–6639 (2004).

    Article  CAS  Google Scholar 

  12. Darensbourg, D. J. Making plastics from carbon dioxide: Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. Chem. Rev. 107, 2388–2410 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Lu, X.-B. & Darensbourg, D. J. Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chem. Soc. Rev. 41, 1462–1484 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Qin, Z. Q., Thomas, C. M., Lee, S. & Coates, G. W. Cobalt-based complexes for the copolymerization of propylene oxide and CO2: active and selective catalysts for polycarbonate synthesis. Angew. Chem. Int. Ed. 42, 5484–5487 (2003).

    Article  CAS  Google Scholar 

  16. Darensbourg, D. J., Yarbrough, J. C., Ortiz, C. & Fang, C. C. Comparative kinetic studies of the copolymerization of cyclohexene oxide and propylene oxide with carbon dioxide in the presence of chromium salen derivatives. In situ FTIR measurements of copolymer vs cyclic carbonate production. J. Am. Chem. Soc. 125, 7586–7591 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Lu, X.-B. & Wang, Y. Highly active, binary catalyst systems for the alternating copolymerization of CO2 and epoxides under mild conditions. Angew. Chem. Int. Ed. 43, 3574–3577 (2004).

    Article  CAS  Google Scholar 

  18. Cohen, C. T., Chu, T. & Coates, G. W. Cobalt catalysts for the alternating copolymerization of propylene oxide and carbon dioxide: combining high activity and selectivity. J. Am. Chem. Soc. 127, 10869–10878 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Lu, X.-B. et al. Design of highly active binary catalyst systems for CO2/epoxide copolymerization: polymer selectivity, enantioselectivity, and stereochemistry control. J. Am. Chem. Soc. 128, 1664–1674 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Nakano, K., Kamada, T. & Nozaki, K. Selective formation of polycarbonate over cyclic carbonate: copolymerization of epoxides with carbon dioxide catalyzed by a cobalt(III) complex with a piperidinium end-capping arm. Angew. Chem. Int. Ed. 45, 7274–7277 (2006).

    Article  CAS  Google Scholar 

  21. Ren, W.-M., Liu, Z.-W., Wen, Y.-Q., Zhang, R. & Lu, X.-B. Mechanistic aspects of the copolymerization of CO2 with epoxides using a thermally stable single-site cobalt(III) catalyst. J. Am. Chem. Soc. 131, 11509–11518 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Sujith, S., Min, J. K., Seong, J. E., Na, S. J. & Lee, B. Y. A highly active and recyclable catalytic system for CO2/propylene oxide copolymerization. Angew. Chem. Int. Ed. 47, 7306–7309 (2008).

    Article  CAS  Google Scholar 

  23. Zhang, D., Boopathi, S. K., Hadjichristidis, N., Gnanou, Y. & Feng, X. Metal-free alternating copolymerization of CO2 with epoxides: fulfilling ‘green’ synthesis and activity. J. Am. Chem. Soc. 138, 11117–11120 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Cao, H., Qin, Y., Zhuo, C., Wang, X. & Wang, F. Homogeneous metallic oligomer catalyst with multisite intramolecular cooperativity for the synthesis of CO2-based polymers. ACS Catal. 9, 8669–8676 (2019).

    Article  CAS  Google Scholar 

  25. Deacy, A. C., Moreby, E., Phanopoulos, A. & Williams, C. K. Co(III)/alkali–metal(I) heterodinuclear catalysts for the ring-opening copolymerization of CO2 and propylene oxide. J. Am. Chem. Soc. 142, 19150–19160 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, J., Wang, L., Liu, S. & Li, Z. Synthesis of diverse polycarbonates by organocatalytic copolymerization of CO2 and epoxides: from high pressure and temperature to ambient conditions. Angew. Chem. Int. Ed. 61, e202111197 (2022).

    CAS  Google Scholar 

  27. Tong, Y. et al. Highly active bifunctional dual-arm organoboron catalysts bearing cooperative intramolecular structures for the copolymerization of CO2 and epoxides. J. CO2 Util. 60, 101979 (2022).

    Article  CAS  Google Scholar 

  28. Wang, J., Zhang, H., Miao, Y., Qiao, L. & Wang, X. A whole-procedure solvent-free route to CO2-based waterborne polyurethane by an elevated-temperature dispersing strategy. Green Chem. 19, 2194–2200 (2017).

    Article  CAS  Google Scholar 

  29. Robertson, N. J. et al. Two-dimensional double metal cyanide complexes: highly active catalysts for the homopolymerization of propylene oxide and copolymerization of propylene oxide and carbon dioxide. Dalton Trans. 5390–5395 (2006).

  30. Gao, Y., Gu, L., Qin, Y., Wang, X. & Wang, F. Dicarboxylic acid promoted immortal copolymerization for controllable synthesis of low-molecular weight oligo(carbonate-ether) diols with tunable carbonate unit content. J. Polym. Sci. A 50, 5177–5184 (2012).

    Article  CAS  Google Scholar 

  31. Bohm, K., Maerten, S. G., Liauw, M. A. & Müller, T. E. Exploring the sequence of comonomer insertion into growing poly(ether carbonate) chains with Monte Carlo methods. Macromolecules 53, 6861–6865 (2020).

    Article  Google Scholar 

  32. Yang, G.-W., Zhang, Y.-Y. & Wu, G.-P. Modular organoboron catalysts enable transformations with unprecedented reactivity. Acc. Chem. Res. 54, 4434–4448 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Yang, G.-W., Zhang, Y.-Y., Xie, R. & Wu, G.-P. Scalable bifunctional organoboron catalysts for copolymerization of CO2 and epoxides with unprecedented efficiency. J. Am. Chem. Soc. 142, 12245–12255 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, Y.-Y. et al. Scalable, durable, and recyclable metal-free catalysts for highly efficient conversion of CO2 to cyclic carbonates. Angew. Chem. Int. Ed. 59, 23291–23298 (2020).

    Article  CAS  Google Scholar 

  35. List, B. & Debie, L. M. Efficient conversion of CO2 into cyclic carbonates with durable and recyclable organoboron catalysts. Synfacts 17, 0328 (2021).

    Article  Google Scholar 

  36. Yang, G.-W., Zhang, Y.-Y., Xie, R. & Wu, G.-P. High-activity organocatalysts for polyether synthesis via intramolecular ammonium cation assisted SN2 ring-opening polymerization. Angew. Chem. Int. Ed. 59, 16910–16917 (2020).

    Article  CAS  Google Scholar 

  37. Yang, G.-W. et al. Pinwheel-shaped tetranuclear organoboron catalysts for perfectly alternating copolymerization of CO2 and epichlorohydrin. J. Am. Chem. Soc. 143, 3455–3465 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Kiernicki, J. J., Zeller, M. & Szymczak, N. K. Requirements for Lewis acid-mediated capture and N–N bond cleavage of hydrazine at iron. Inorg. Chem. 58, 1147–1154 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakano, K., Hashimoto, S. & Nozaki, K. Bimetallic mechanism operating in the copolymerization of propylene oxide with carbon dioxide catalyzed by cobalt–salen complexes. Chem. Sci. 1, 369–373 (2010).

    Article  CAS  Google Scholar 

  40. Jung, M. E. & Gervay, J. gem-Dialkyl effect in the intramolecular Diels–Alder reaction of 2-furfuryl methyl fumarates: the reactive rotamer effect, enthalpic basis for acceleration, and evidence for a polar transition state. J. Am. Chem. Soc. 113, 224–232 (1991).

    Article  CAS  Google Scholar 

  41. Jung, M. E. & Piizzi, G. gem-Disubstituent effect: theoretical basis and synthetic applications. Chem. Rev. 105, 1735–1766 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Lu, X.-B., Ren, W.-M. & Wu, G.-P. CO2 copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control. Acc. Chem. Res. 45, 1721–1735 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Klaus, S. et al. Mechanistic insights into heterogeneous zinc dicarboxylates and theoretical considerations for CO2–epoxide copolymerization. J. Am. Chem. Soc. 133, 13151–13161 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Kerr, R. W. F. & Williams, C. K. Zr(IV) catalyst for the ring-opening copolymerization of anhydrides (A) with epoxides (B), oxetane (B), and tetrahydrofurans (C) to make ABB- and/or ABC-poly(ester-altethers). J. Am. Chem. Soc. 144, 6882–6893 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support from the Zhejiang Provincial Natural Science Foundation of China (LR21B040001 to G.-P.W.) and the National Natural Science Foundation of China (grants 91956123 to G.-P.W., 51973186 to G.-P.W., and 22101253 to G.-W.Y.) is gratefully acknowledged. Special thanks to W.-M. Ren in Dalian University of Technology for assistance with the GC–MS analysis.

Author information

Authors and Affiliations

Authors

Contributions

G.-W.Y. and G.-P.W. conceived the idea of the project. G.-W.Y. synthesized the catalysts. G.-W.Y, C.-K.X., Y.-Y.Z., C.L., H.Q., L.Y. and Y.W. performed the polymerizations. Y.-Y.Z. carried out the single-crystal X-ray diffraction study. R.X. performed the DFT calculations. G.-W.Y. and G.-P.W. analysed the data and wrote the manuscript. G.-P.W. directed the investigations.

Corresponding author

Correspondence to Guang-Peng Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks James Eagan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Effects of reaction temperature and CO2 pressure on sequence selectivity.

a, Sequence-control copolymerization of propylene oxide and CO2 with -AB-, -ABB-, and -ABn- (n ≥ 3) sequences using catalyst 7. b, The influence of reaction temperature and CO2 pressure on sequence selectivity. As shown, the selectivity of -AB-, -ABB-, and -ABn- (n ≥ 3) sequences is regulated over a wide range by varying the reaction conditions.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–18, procedures, DFT calculations, characterization, discussion and Tables 1–5.

Supplementary Data 1

Crystallographic data of catalyst_7 CCDC 2012655.

Supplementary Data 2

Crystallographic data of catalyst_8 CCDC 2123603.

Supplementary Data 3

Crystallographic data of catalyst_9 CCDC 1974836.

Supplementary Data 4

Crystallographic data of compound_D1 CCDC 2091870.

Supplementary Data 5

Crystallographic data of compound_D2 CCDC 2091869.

Source data

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, GW., Xu, CK., Xie, R. et al. Precision copolymerization of CO2 and epoxides enabled by organoboron catalysts. Nat. Synth 1, 892–901 (2022). https://doi.org/10.1038/s44160-022-00137-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00137-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing